Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Eur J Orthop Surg Traumatol ; 34(3): 1457-1463, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38240824

RESUMO

INTRODUCTION: The use of a robotic system for the placement of pedicle screws in spine surgeries is well documented in the literature. However, there is only a single report in the United States describing the use of a robotic system to place two screws in osseous fixation pathways (OFPs) commonly used in the treatment of pelvic and acetabular fractures in a simulated bone model. The purpose of this study was to demonstrate the use of a robotic system to place screws in multiple, clinically relevant OFPs in a cadaveric model and to quantitatively measure accuracy of screw placement relative to the preoperative plan. METHODS: A single cadaveric specimen was obtained for the purpose of this study. All surrounding soft tissues were left intact. Screws were placed in OFPs, namely iliosacral (IS), trans-sacral (TS), Lateral Compression-II (LC-II), antegrade anterior column (AC) and antegrade posterior column (PC) of the right hemipelvis using standard, fluoroscopically assisted percutaneous or mini-open technique. Following the placement of screws into the right hemipelvis using standard techniques, screws were planned and placed in the same OFPs of the contralateral hemipelvis using the commercially available ExcelsiusGPS® robotic system (Globus Medical Inc., Audubon, PA). After robotic-assisted screw placement, a post-procedure CT scan was obtained to evaluate actual screw placement against the pre-procedure plan. A custom-made image analysis program was devised to measure screw tip/tail offset and angular offset on axial and sagittal planes. RESULTS: For different OFPs, the mean tip offset, tail offset and angular offsets were 1.6 ± 0.9 mm (Range 0.0-3.6 mm), 1.4 ± 0.4 mm (Range 0.3-2.5 mm) and 1.1 ± 0.4° (Range 0.5-2.1), respectively. CONCLUSION: In this feasibility study, surgeons were able to place screws into the clinically relevant fracture pathways of the pelvis using ExcelsiusGPS® for robotic-assisted surgery. The measured accuracy was encouraging; however, further investigation is needed to demonstrate that robotic-assisted surgery can be used to successfully place the screws in the bony corridors of the pelvis to treat traumatic pelvic injuries.


Assuntos
Fraturas do Quadril , Parafusos Pediculares , Procedimentos Cirúrgicos Robóticos , Cirurgia Assistida por Computador , Humanos , Procedimentos Cirúrgicos Robóticos/métodos , Estudos de Viabilidade , Cadáver , Cirurgia Assistida por Computador/métodos
2.
Oper Neurosurg (Hagerstown) ; 26(1): 38-45, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37747337

RESUMO

BACKGROUND AND OBJECTIVES: Instrumented spinal fusion constructs sometimes fail because of fatigue loading, frequently necessitating open revision surgery. Favorable outcomes after percutaneous juxtapedicular cement salvage (perc-cement salvage) of failing instrumentation have been described; however, this approach is not widely known among spine surgeons , and its biomechanical properties have not been evaluated. We report our institutional experience with perc-cement salvage and investigate the relative biomechanical strength of this technique as compared with 3 other common open revision techniques. METHODS: A retrospective chart review of patients who underwent perc-cement salvage was conducted. Biomechanical characterization of revision techniques was performed in a cadaveric model of critical pedicle screw failure. Three revision cohorts involved removal and replacement of hardware: (1) screw upsizing, (2) vertebroplasty, and (3) fenestrated screw with cement augmentation. These were compared with a cohort with perc-cement salvage performed using a juxtapedicular trajectory with the failed primary screw remaining engaged in the vertebral body. RESULTS: Ten patients underwent perc-cement salvage from 2018 to 2022 to address screw haloing and/or endplate fracture threatening construct integrity. Pain palliation was reported by 8/10 patients. Open revision surgery was required in 4/10 patients, an average of 8.9 months after the salvage procedure (range 6.2-14.7 months). Only one revision was due to progressive hardware dislodgement. The remainder avoided open revision surgery through an average of 1.9 years of follow-up. In the cadaveric study, there were no significant differences in pedicle screw pullout strength among any of the revision cohorts. CONCLUSION: Perc-cement salvage of failing instrumentation is reasonably efficacious. The technique is biomechanically noninferior to other revision strategies that require open surgery for removal and replacement of hardware. Open revision surgery may be avoided by perc-cement salvage in select cases.


Assuntos
Vértebras Lombares , Parafusos Pediculares , Humanos , Vértebras Lombares/cirurgia , Estudos Retrospectivos , Cimentos Ósseos/uso terapêutico , Cadáver
3.
J Shoulder Elbow Surg ; 30(10): 2240-2246, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33675968

RESUMO

BACKGROUND: Stemless anatomic total shoulder arthroplasty (TSA) has been gaining significant popularity but poses unique challenges for subscapularis repair. Tenotomy with side-to-side repair has been the most frequently reported technique for subscapularis repair with stemless TSA but has the poorest biomechanical properties, and clinical failures have been reported. There is limited biomechanical evidence evaluating other subscapularis repair techniques for stemless TSA. Therefore, the goal of this study was to investigate 2 additional techniques using a subscapularis peel for subscapularis repair with a stemless TSA. METHODS: We used 18 male cadaveric specimens to investigate the native subscapularis (n = 6) and 2 subscapularis repair techniques (n = 12) after stemless anatomic TSA (Eclipse). A subscapularis peel with double-row, knotless anchor-based repair (n = 6) was compared with a subscapularis peel with a "backpack" repair (n = 6). The specimens then underwent biomechanical testing, including cyclic displacement and load-to-failure testing. The mode of failure was also recorded. RESULTS: The native tendon had the highest ultimate load to failure (mean, 1017.1 N). Load to failure was similar between the 2 study groups: 397.9 N for the peel and backpack repair and 593.7 N for the knotless anchor-based repair (P > .05 for all comparisons). Moreover, no significant differences in cyclic displacement or construct stiffness were found between the groups (P > .05 for all comparisons). CONCLUSIONS: A double-row, knotless anchor-based repair of a subscapularis peel for stemless anatomic shoulder arthroplasty has similar biomechanical properties to a backpack repair technique; however, both techniques fail to reproduce the native biomechanical properties at time zero.


Assuntos
Artroplastia do Ombro , Articulação do Ombro , Fenômenos Biomecânicos , Cadáver , Humanos , Masculino , Osteotomia , Manguito Rotador/cirurgia , Articulação do Ombro/cirurgia , Âncoras de Sutura , Técnicas de Sutura
4.
Vet Surg ; 49(4): 736-740, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32073178

RESUMO

OBJECTIVE: To determine the mechanical pull-out properties of a 2.5-mm bone anchor implanted in ex vivo femurs of toy breed dogs and to determine whether there is a difference between knotted and knotless configurations. STUDY DESIGN: Experimental study. SAMPLE POPULATION: Eight paired harvested femurs. METHODS: Femurs were assigned to knotted or knotless configuration. Equal numbers of right and left femurs were tested. The caudolateral femoral condyle at the distal pole of the lateral fabella (F2 site) was drilled. The assigned configuration with braided suture combined with the bone anchor was implanted into the F2 site. Each configuration was positioned into a mechanical testing machine to measure yield load, load at 3-mm displacement, ultimate load, stiffness, and mode of failure at the beginning of the canine standing phase angle (150°). RESULTS: Mean ultimate load was 100.14 and 88.69 N (P = .798), mean yield load was 59.72 and 55.85 N (P = .708), load at 3-mm displacement was 46.72 and 43.33 N (P = .656), and stiffness was calculated to be 43.06 and 47.09 N/mm (P = .548) for knotted and knotless configurations, respectively. Mode of failure occurred primarily by anchor pull-out. CONCLUSION: The bone anchor withstood deformation at the estimated forces applied on the native cranial cruciate ligament (CCL) of toy breed dogs in both configurations. CLINICAL SIGNIFICANCE: This bone anchor may constitute a useful alternative for stabilization of the CCL deficient stifle in toy breed dogs. However, before it can be recommended for widespread use in dogs, closely monitored clinical trials must be conducted to assess outcome and complications associated with this implant.


Assuntos
Lesões do Ligamento Cruzado Anterior/veterinária , Ligamento Cruzado Anterior/cirurgia , Âncoras de Sutura/veterinária , Animais , Lesões do Ligamento Cruzado Anterior/cirurgia , Fenômenos Biomecânicos , Cadáver , Cães , Joelho de Quadrúpedes/cirurgia
5.
J Knee Surg ; 31(1): 43-49, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28355681

RESUMO

Small animal models are critical for studies of sports-related knee injury and disease such as posttraumatic osteoarthritis (PTOA) following anterior cruciate ligament (ACL) rupture. In such models, ACL damage can be achieved by surgical transection or, using a more recent innovation, by noninvasive biomechanical means. Whether these approaches differentially alter normal mechanics is unknown. Furthermore, while surgical reconstruction of ruptured ACL can greatly improve joint stability, its effect on PTOA development is also unclear. Our primary purpose was to characterize rodent knee joint mechanics in two models of ACL rupture using a novel quantitative laxity mechanical test. Our secondary aim was to characterize a new reconstruction technique using autograft tail tendon, and to assess its effect on joint mechanics. Our hypothesis was that surgical ACL transection would have a greater effect on joint mechanics. A total of 24 rat knee specimens underwent surgical or biomechanical ACL rupture and were stabilized using a new reconstruction technique using autograft tail tendon. Joint mechanics were assessed three times; preinjury, postinjury, and again after reconstruction, using quantitative joint laxity testing. Primary test readouts were maximum anteroposterior (AP) laxity, loading curve slope, and energy absorption. Student's t-tests were performed to identify intragroup differences. All surgical transections were completed successfully; maximum load in the biomechanical model was 67 ± 7.7 N, with a coefficient of variation of 11.43%. Surgical transection caused increased AP laxity, while biomechanical injury nonsignificantly increased this parameter. In both cases, these changes recovered to baseline by reconstruction. Loading curve slope was reduced in both models and was also returned to baseline by repair. Energy absorption followed the same pattern except it remained significantly different from baseline postreconstruction in the surgical group. This study supports our hypothesis knee joint mechanics is differentially affected by injury mechanism in a small animal model. We also report a novel reconstruction technique in this model, using autograft tail tendon.


Assuntos
Lesões do Ligamento Cruzado Anterior/etiologia , Lesões do Ligamento Cruzado Anterior/cirurgia , Reconstrução do Ligamento Cruzado Anterior/métodos , Ruptura/etiologia , Animais , Autoenxertos , Fenômenos Biomecânicos , Modelos Animais de Doenças , Osteoartrite/etiologia , Osteoartrite/cirurgia , Ratos Sprague-Dawley , Ruptura/cirurgia , Joelho de Quadrúpedes/cirurgia , Tendões/transplante
6.
Arthritis Res Ther ; 19(1): 280, 2017 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-29258611

RESUMO

BACKGROUND: Atsttrin, an engineered protein composed of three tumor necrosis factor receptor (TNFR)-binding fragments of progranulin (PGRN), shows therapeutic effect in multiple murine models of inflammatory arthritis . Additionally, intra-articular delivery of PGRN protects against osteoarthritis (OA) progression. The purpose of this study is to determine whether Atsttrin also has therapeutic effects in OA and the molecular mechanisms involved. METHODS: Surgically induced and noninvasive rupture OA models were established in mouse and rat, respectively. Cartilage degradation and OA were evaluated using Safranin O staining, immunohistochemistry, and ELISA. Additionally, expressions of pain-related markers, degenerative factors, and anabolic and catabolic markers known to be involved in OA were analyzed. Furthermore, the anabolic and anti-catabolic effects and underlying mechanisms of Atsttrin were determined using in-vitro assays with primary chondrocytes. RESULTS: Herein, we found Atsttrin effectively prevented the accelerated OA phenotype associated with PGRN deficiency. Additionally, Atsttrin exhibited a preventative effect in OA by protecting articular cartilage and reducing OA-associated pain in both nonsurgically induced rat and surgically induced murine OA models. Mechanistic studies revealed that Atsttrin stimulated TNFR2-Akt-Erk1/2-dependent chondrocyte anabolism, while inhibiting TNFα/TNFR1-mediated inflammatory catabolism. CONCLUSIONS: These findings not only provide new insights into the role of PGRN and its derived engineered protein Atsttrin in cartilage homeostasis as well as OA in vivo, but may also lead to new therapeutic alternatives for OA as well as other relative degenerative joint diseases.


Assuntos
Osteoartrite/patologia , Proteínas Recombinantes de Fusão/metabolismo , Animais , Cartilagem Articular/metabolismo , Células Cultivadas , Condrócitos/metabolismo , Modelos Animais de Doenças , Granulinas , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Osteoartrite/metabolismo , Progranulinas , Ratos , Ratos Sprague-Dawley
7.
Nat Commun ; 8: 15019, 2017 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-28492224

RESUMO

Osteoarthritis (OA) is characterized by cartilage destruction and chondrocytes have a central role in this process. With age and inflammation chondrocytes have reduced capacity to synthesize and maintain ATP, a molecule important for cartilage homeostasis. Here we show that concentrations of ATP and adenosine, its metabolite, fall after treatment of mouse chondrocytes and rat tibia explants with IL-1ß, an inflammatory mediator thought to participate in OA pathogenesis. Mice lacking A2A adenosine receptor (A2AR) or ecto-5'nucleotidase (an enzyme that converts extracellular AMP to adenosine) develop spontaneous OA and chondrocytes lacking A2AR develop an 'OA phenotype' with increased expression of Mmp13 and Col10a1. Adenosine replacement by intra-articular injection of liposomal suspensions containing adenosine prevents development of OA in rats. These results support the hypothesis that maintaining extracellular adenosine levels is an important homeostatic mechanism, loss of which contributes to the development of OA; targeting adenosine A2A receptors might treat or prevent OA.


Assuntos
5'-Nucleotidase/genética , Adenosina/farmacologia , Artrite Experimental/tratamento farmacológico , Cartilagem Articular/efeitos dos fármacos , Condrócitos/efeitos dos fármacos , Receptor A2A de Adenosina/genética , 5'-Nucleotidase/deficiência , Adenosina/metabolismo , Animais , Artrite Experimental/genética , Artrite Experimental/metabolismo , Artrite Experimental/patologia , Cartilagem Articular/metabolismo , Cartilagem Articular/patologia , Condrócitos/metabolismo , Condrócitos/patologia , Colágeno Tipo X/genética , Colágeno Tipo X/metabolismo , Regulação da Expressão Gênica , Homeostase , Humanos , Injeções Intra-Articulares , Interleucina-1beta/antagonistas & inibidores , Interleucina-1beta/farmacologia , Lipossomos/administração & dosagem , Masculino , Metaloproteinase 13 da Matriz/genética , Metaloproteinase 13 da Matriz/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Osteoartrite/tratamento farmacológico , Osteoartrite/genética , Osteoartrite/metabolismo , Osteoartrite/patologia , Ratos , Ratos Sprague-Dawley , Receptor A2A de Adenosina/deficiência , Transdução de Sinais , Tíbia/efeitos dos fármacos , Tíbia/metabolismo , Tíbia/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA