Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Acta Pharmacol Sin ; 44(8): 1649-1664, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36997665

RESUMO

Excessive apoptosis of intestinal epithelial cell (IEC) is a crucial cause of disrupted epithelium homeostasis, leading to the pathogenesis of ulcerative colitis (UC). The regulation of Takeda G protein-coupled receptor-5 (TGR5) in IEC apoptosis and the underlying molecular mechanisms remained unclear, and the direct evidence from selective TGR5 agonists for the treatment of UC is also lacking. Here, we synthesized a potent and selective TGR5 agonist OM8 with high distribution in intestinal tract and investigated its effect on IEC apoptosis and UC treatment. We showed that OM8 potently activated hTGR5 and mTGR5 with EC50 values of 202 ± 55 nM and 74 ± 17 nM, respectively. After oral administration, a large amount of OM8 was maintained in intestinal tract with very low absorption into the blood. In DSS-induced colitis mice, oral administration of OM8 alleviated colitis symptoms, pathological changes and impaired tight junction proteins expression. In addition to enhancing intestinal stem cell (ISC) proliferation and differentiation, OM8 administration significantly reduced the rate of apoptotic cells in colonic epithelium in colitis mice. The direct inhibition by OM8 on IEC apoptosis was further demonstrated in HT-29 and Caco-2 cells in vitro. In HT-29 cells, we demonstrated that silencing TGR5, inhibition of adenylate cyclase or protein kinase A (PKA) all blocked the suppression of JNK phosphorylation induced by OM8, thus abolished its antagonizing effect against TNF-α induced apoptosis, suggesting that the inhibition by OM8 on IEC apoptosis was mediated via activation of TGR5 and cAMP/PKA signaling pathway. Further studies showed that OM8 upregulated cellular FLICE-inhibitory protein (c-FLIP) expression in a TGR5-dependent manner in HT-29 cells. Knockdown of c-FLIP blocked the inhibition by OM8 on TNF-α induced JNK phosphorylation and apoptosis, suggesting that c-FLIP was indispensable for the suppression of OM8 on IEC apoptosis induced by OM8. In conclusion, our study demonstrated a new mechanism of TGR5 agonist on inhibiting IEC apoptosis via cAMP/PKA/c-FLIP/JNK signaling pathway in vitro, and highlighted the value of TGR5 agonist as a novel therapeutic strategy for the treatment of UC.


Assuntos
Colite Ulcerativa , Colite , Humanos , Camundongos , Animais , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/metabolismo , Proteína Reguladora de Apoptosis Semelhante a CASP8 e FADD/metabolismo , Sulfato de Dextrana/toxicidade , Fator de Necrose Tumoral alfa/metabolismo , Células CACO-2 , Sistema de Sinalização das MAP Quinases , Transdução de Sinais , Colite/induzido quimicamente , Apoptose , Mucosa Intestinal/metabolismo , Células Epiteliais/metabolismo , Camundongos Endogâmicos C57BL
2.
Medicine (Baltimore) ; 102(13): e33422, 2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-37000060

RESUMO

RATIONALE: Fibroadenoma is the most common benign tumor of the breast, but giant juvenile fibroadenoma exceeding 20 cm is much rare. This report presents the largest and heaviest giant juvenile fibroadenoma in an 18-year-old Chinese girl. DIAGNOSIS AND INTERVENTIONS: An 18-year-old adolescent girl with a 2-year history of a large left breast mass with progressive expansion over 11 months. A 28 × 21 cm soft swelling occupied the entire outer quadrants of the left breast. The huge mass sagged below the belly button, resulting in high asymmetry of the shoulders. Contralateral breast examination results were normal except for hypopigmentary detected on the nipple-areola complex. Under general anesthesia, the lump was completely excised along the outer envelope of the tumor, while reserving excessive resection of the skin. The patient's postoperative recovery was uneventful, and the surgical wound healed well. OUTCOMES: A radial incision operation was finally performed to remove the huge mass and to preserve the normal breast tissue and the nipple-areolar complex, not only considering the aesthetics but also preserving the ability to lactate. LESSONS: Currently, there is a lack of clear guidelines regarding the diagnostic and treatment modalities for a giant juvenile fibroadenoma. The principle of surgical choice is to balance aesthetics and function preservation.


Assuntos
Neoplasias da Mama , Fibroadenoma , Fibroma , Ferida Cirúrgica , Feminino , Adolescente , Humanos , Fibroadenoma/diagnóstico , Fibroadenoma/cirurgia , Fibroadenoma/patologia , População do Leste Asiático , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/cirurgia , Neoplasias da Mama/patologia , Mamilos/patologia , Pele/patologia
3.
Acta Pharmacol Sin ; 44(3): 596-609, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36085523

RESUMO

Promotion of hepatic glycogen synthesis and inhibition of hepatic glucose production are effective strategies for controlling hyperglycemia in type 2 diabetes mellitus (T2DM), but agents with both properties were limited. Herein we report coronarin A, a natural compound isolated from rhizomes of Hedychium gardnerianum, which simultaneously stimulates glycogen synthesis and suppresses gluconeogenesis in rat primary hepatocytes. We showed that coronarin A (3, 10 µM) dose-dependently stimulated glycogen synthesis accompanied by increased Akt and GSK3ß phosphorylation in rat primary hepatocytes. Pretreatment with Akt inhibitor MK-2206 (2 µM) or PI3K inhibitor LY294002 (10 µM) blocked coronarin A-induced glycogen synthesis. Meanwhile, coronarin A (10 µM) significantly suppressed gluconeogenesis accompanied by increased phosphorylation of MEK, ERK1/2, ß-catenin and increased the gene expression of TCF7L2 in rat primary hepatocytes. Pretreatment with ß-catenin inhibitor IWR-1-endo (10 µM) or ERK inhibitor SCH772984 (1 µM) abolished the coronarin A-suppressed gluconeogenesis. More importantly, we revealed that coronarin A activated PI3K/Akt/GSK3ß and ERK/Wnt/ß-catenin signaling via regulation of a key upstream molecule IRS1. Coronarin A (10, 30 µM) decreased the phosphorylation of mTOR and S6K1, the downstream target of mTORC1, which further inhibited the serine phosphorylation of IRS1, and subsequently increased the tyrosine phosphorylation of IRS1. In type 2 diabetic ob/ob mice, chronic administration of coronarin A significantly reduced the non-fasting and fasting blood glucose levels and improved glucose tolerance, accompanied by the inhibited hepatic mTOR/S6K1 signaling and activated IRS1 along with enhanced PI3K/Akt/GSK3ß and ERK/Wnt/ß-catenin pathways. These results demonstrate the anti-hyperglycemic effect of coronarin A with a novel mechanism by inhibiting mTORC1/S6K1 to increase IRS1 activity, and highlighted coronarin A as a valuable lead compound for the treatment of T2DM.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Camundongos , Ratos , Animais , Gluconeogênese , Glicogênio Hepático/metabolismo , beta Catenina/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Insulina/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Glucose/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Homeostase , Fosforilação
4.
Eur J Med Chem ; 242: 114697, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36029562

RESUMO

Ulcerative colitis (UC) is a gastrointestinal disease with complex etiology, and the shortage of the treatment further intensifies the need to discover new therapies based on novel mechanisms and strategies. TGR5 and DPP4 are beneficial to treat UC through multiple mechanisms, notably increasing GLP-2 levels by promoting secretion and inhibiting degradation respectively. However, some unwanted systemic effects caused by systemic exposure hinder development, especially the gallbladder-filling effects. Herein, we firstly reported a series of high-potency gut-restricted TGR5-DPP4 bifunctional molecules by gut-restriction and multitarget strategies to utilize the positive impacts of TGR5 and DPP4 on UC and avoid unwanted systemic effects. In particularly, racemic compound 15, a high-potency TGR5-DPP4 bifunctional molecule, showed favorable intestinal distribution, preferable efficacy in mice colitis model and good gallbladder safety. Therefore, the feasibility of gut-restricted TGR5-DPP4 bifunctional molecule was confirmed for the treatment UC, providing a new insight into the development of anti-UC drugs.


Assuntos
Colite Ulcerativa , Colite , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Animais , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Dipeptidil Peptidase 4 , Modelos Animais de Doenças , Vesícula Biliar , Peptídeo 2 Semelhante ao Glucagon , Camundongos , Camundongos Endogâmicos C57BL , Receptores Acoplados a Proteínas G/metabolismo
5.
Clin Sci (Lond) ; 135(19): 2243-2263, 2021 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-34569605

RESUMO

The protein tyrosine kinase inhibitor imatinib is used in the treatment of various malignancies but may also promote beneficial effects in the treatment of diabetes. The aim of the present investigation was to characterize the mechanisms by which imatinib protects insulin producing cells. Treatment of non-obese diabetic (NOD) mice with imatinib resulted in increased beta-cell AMP-activated kinase (AMPK) phosphorylation. Imatinib activated AMPK also in vitro, resulting in decreased ribosomal protein S6 phosphorylation and protection against islet amyloid polypeptide (IAPP)-aggregation, thioredoxin interacting protein (TXNIP) up-regulation and beta-cell death. 5-Aminoimidazole-4-carboxamide ribonucleotide (AICAR) mimicked and compound C counteracted the effect of imatinib on beta-cell survival. Imatinib-induced AMPK activation was preceded by reduced glucose/pyruvate-dependent respiration, increased glycolysis rates, and a lowered ATP/AMP ratio. Imatinib augmented the fractional oxidation of fatty acids/malate, possibly via a direct interaction with the beta-oxidation enzyme enoyl coenzyme A hydratase, short chain, 1, mitochondrial (ECHS1). In non-beta cells, imatinib reduced respiratory chain complex I and II-mediated respiration and acyl-CoA carboxylase (ACC) phosphorylation, suggesting that mitochondrial effects of imatinib are not beta-cell specific. In conclusion, tyrosine kinase inhibitors modestly inhibit mitochondrial respiration, leading to AMPK activation and TXNIP down-regulation, which in turn protects against beta-cell death.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Diabetes Mellitus/tratamento farmacológico , Metabolismo Energético/efeitos dos fármacos , Hipoglicemiantes/farmacologia , Mesilato de Imatinib/farmacologia , Células Secretoras de Insulina/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Animais , Proteínas de Transporte/metabolismo , Morte Celular/efeitos dos fármacos , Linhagem Celular , Respiração Celular/efeitos dos fármacos , Diabetes Mellitus/enzimologia , Diabetes Mellitus/patologia , Modelos Animais de Doenças , Enoil-CoA Hidratase/metabolismo , Ativação Enzimática , Humanos , Células Secretoras de Insulina/enzimologia , Células Secretoras de Insulina/patologia , Polipeptídeo Amiloide das Ilhotas Pancreáticas/metabolismo , Masculino , Camundongos Endogâmicos NOD , Mitocôndrias/enzimologia , Mitocôndrias/patologia , Fosforilação , Ratos Sprague-Dawley , Proteína S6 Ribossômica/metabolismo
6.
Bioorg Med Chem ; 43: 116280, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34256254

RESUMO

The farnesoid X receptor (FXR) is a promising therapeutic target for nonalcoholic steatohepatitis (NASH) and other bile acid related diseases because it plays a critical role in fibrosis, inflammation and bile acid homeostasis. Obeticholic acid (OCA), a FXR agonist which was synthesized from chenodeoxycholic acid, showed desirable curative effects in clinical trials. However, the pruritus which was the main side effect of OCA limited its further applications in NASH. Although pruritus was also observed in the clinical trials of non-steroidal FXR agonists, the proportion of patients with pruritus was much smaller than that of OCA. Thus, we decided to develop non-steroidal FXR agonists and discovered a series of novel FXR agonists which were synthesized from GW4064 by replacing the stilbene group with ketoxime ether. Encouragingly, in the following biological tests, our target compounds 13j and 13z not only showed potent FXR agonistic activities in vitro, but also effectively promoted the expression of target genes in vivo. More importantly, in the pharmacokinetic experiments, compounds 13j and 13z displayed high liver/blood ratio characteristics which were helpful to reduce the potential side effects which were caused by prolonged systemic activation of FXR. In summary, our compounds were good choices for the development of non-steroidal FXR agonists and were deserved further investigation.


Assuntos
Descoberta de Drogas , Éteres/farmacologia , Fígado/química , Oximas/farmacologia , Receptores Citoplasmáticos e Nucleares/agonistas , Administração Oral , Relação Dose-Resposta a Droga , Éteres/administração & dosagem , Éteres/química , Humanos , Fígado/metabolismo , Estrutura Molecular , Oximas/administração & dosagem , Oximas/química , Relação Estrutura-Atividade
7.
Metabolism ; 120: 154797, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33984334

RESUMO

OBJECTIVE: Obeticholic acid (OCA) has been proved to play potential therapeutic effect on nonalcoholic steatohepatitis (NASH). Up to now, the study of OCA on NLRP3 inflammasome activation in macrophage is still blank and merits great attention. Here, we aimed to better characterize the role and mechanism of OCA on NASH treatment focusing on NLRP3 inflammasome activation in macrophages. METHODS: The effects of OCA on inflammasome activation were investigated in BMDM, Kupffer cell, BMDC and LX2 cell. Preconditioned media from BMDM culture was used to treat primary hepatocytes to explore the effects of macrophage NLRP3 inflammasome activation on the function of hepatocytes. In vivo, high fat diet plus CCl4 (DIO + CCl4) induced murine NASH model and choline-deficient and amino acid-defined (CDA) diet-induced NASH mice were used to verify the inhibitory effect of OCA on inflammasome activation in liver macrophages and recapitulate its protective role on NASH progressing. To clear up the effect of OCA on macrophage is FXR dependent or not, FXR siRNA was introduced into BMDMs. RESULTS: OCA blockaded NLRP3 inflammasome in BMDMs by impacting on the activation stage and disrupting ASC oligomerization. Preconditioned supernatant from LPS + ATP treated BMDMs increased mRNA expression of lipogenic enzymes and lipid content, whereas preconditioned supernatant from OCA treated BMDM blocked these effects in both normal and the FXR knockdown hepatocytes. In DIO + CCl4 mice, the population of inflammatory myeloid lineage cells in livers was decreased upon OCA treatment. Accordingly, the level of IL-1ß and IL-18 in liver, the hepatic expression of ASC, pro-caspase-1 and active caspase-1, the expression of caspase 1 p20 in liver macrophages were also reduced. Similar results were obtained in CDA diet-fed mice. Furthermore, OCA maintained the inhibition on NLRP3 inflammasome activation in FXR knockdown BMDMs, suggesting FXR could be dispensable in this effect. CONCLUSIONS: This finding brings up a new mechanism of OCA on NASH treatment, suggested by direct inhibition on NLRP3 inflammasome activation in macrophage, further suppression on inflammasome activation-elicited hepatic lipid accumulation, and contributing to the amelioration of NASH.


Assuntos
Ácido Quenodesoxicólico/análogos & derivados , Inflamassomos/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Animais , Células Cultivadas , Ácido Quenodesoxicólico/farmacologia , Ácido Quenodesoxicólico/uso terapêutico , Regulação para Baixo/efeitos dos fármacos , Inflamassomos/metabolismo , Células de Kupffer/efeitos dos fármacos , Células de Kupffer/metabolismo , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia
8.
Free Radic Biol Med ; 164: 1-12, 2021 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-33388433

RESUMO

Non-alcoholic steatohepatitis (NASH) is the progressive stage of non-alcoholic fatty liver disease that may ultimately lead to cirrhosis and liver cancer, and there are few therapeutic options for its treatment. Physalin B (PB), a withanolide isolated from Physalis species (Solanaceae), exhibits a broad spectrum of biological activities, however, the potential role of PB in NASH has not been evaluated. The present study investigated the protective effects of PB against NASH and further elucidated the mechanisms of PB in hepatic autophagy and oxidative stress in vitro and in vivo. We conducted a series of experiments using methionine-choline deficient (MCD) diet induced NASH mice and cultured L02 cells. Serum markers of liver injury, morphology, and the histology of liver tissues were investigated. Western blot assays and quantitative real-time PCR were used to investigate the hepatoprotective effect of PB. PB significantly ameliorated hepatic injury, including hepatic index, transaminase activities, histology, and inflammation in MCD-induced mice. Moreover, PB markedly increased the expression of P62 and the ratio of LC3Ⅱ/Ⅰ in vitro and in vivo. Furthermore, PB promoted the interaction between endogenous KEAP1 and P62, reduced the interaction between KEAP1 and NRF2, activated the nuclear translocation of NRF2 and NRF2 target gene expression, and ultimately attenuated oxidative stress. In addition, knockdown of P62 blocked PB-mediated activation of NRF2 in L02 cells. These results clearly indicated that PB ameliorated NASH by stimulating autophagy and P62-KEAP1-NRF2 antioxidative signaling, suggesting that PB is expected to become a novel therapeutic drug for NASH.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Animais , Autofagia , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fígado/metabolismo , Metionina/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/metabolismo , Estresse Oxidativo , Secoesteroides
9.
IEEE Access ; 9: 122051-122066, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35321234

RESUMO

Focused ultrasound (FUS) has proven its efficacy in non-invasive, radiation-free cancer treatment. However, the commonly used low-frequency high-intensity focused ultrasound (HIFU) destroys both cancerous and healthy tissues non-specifically through extreme heat and inertial cavitation with low spatial resolution. To address this issue, we evaluate the therapeutic effects of pulsed (60 Hz pulse repetition frequency, 1.45 ms pulse width) high-frequency (20.7 MHz) medium-intensity (spatial-peak pulse-average intensity ISPPA < 279.1 W/cm2, spatial-peak temporal-average intensity ISPTA < 24.3 W/cm2) focused ultrasound (pHFMIFU) for selective cancer treatment without thermal damage and with low risk of inertial cavitation (mechanical index < 0.66), in an in vivo subcutaneous B16F10 melanoma tumor growth model in mice. The pHFMIFU with 104 µm focal diameter is generated by a microfabricated self-focusing acoustic transducer (SFAT) with a Fresnel acoustic lens. A three-axis positioning system has been developed for automatic scanning of the transducer to cover a larger treatment volume, while a water-cooling system is custom-built for dissipating non-acoustic heat from the transducer surface. Initial testing revealed that pHFMIFU treatment can be applied to a living animal while maintaining skin temperature under 35.6 °C without damaging normal skin and tissue. After eleven days of treatment with pHFMIFU, the treated tumors were significantly smaller with large areas of necrosis and apoptosis in the treatment field compared to untreated controls. Potential mechanisms of this selective, non-thermal killing effect, as well as possible causes of and solutions to the variation in treatment results, have been analyzed and proposed. The pHFMIFU could potentially be used as a new therapeutic modality for safer cancer treatment especially in critical body regions, due to its cancer-specific effects and high spatial resolution.

10.
Neural Regen Res ; 16(1): 172-178, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32788473

RESUMO

Stem cells have been confirmed to be involved in the occurrence and development of diabetic retinopathy; however, the underlying mechanisms remain unclear. In this study, we used Citespace software to visually analyze 552 articles exploring the stem cell-based treatment of diabetic retinopathy over the past 20 years, which were included in the Web of Science Core Collection. We found the following: (1) a co-citation analysis of the references cited by all 552 articles indicated 15 clusters. In cluster #0, representing the stem cell field, some highly cited landmark studies emerged between 2009-2013. For example, endothelial progenitor cells and diabetic retinopathy gradually received the full attention of scholars, in terms of their relationship and therapeutic prospects. Some researchers also verified the potential of adipose-derived stem cells to differentiate into stable retinal perivascular cells, using a variety of animal models of retinal vascular disease. All of these achievements provided references for the subsequent stem cell research. (2) An analysis of popular keywords among the 552 articles revealed that, during the past 20 years, a relative increase in basic research articles examining stem cells and endothelial progenitor cells for the treatment of diabetic retinopathy was observed. The contents of these articles primarily involved the expression of vascular endothelial growth factor, vascular regeneration, oxidative stress, and inflammatory response. (3) A burst analysis of keywords used in the 552 articles indicated that genetic and cytological research regarding the promotion of angiogenesis was an issue of concern from 2001 to 2012, including several studies addressing the expression of various growth factor genes; from 2014 to 2020, mouse models of diabetic retinopathy were recognized as mature animal models, and the most recent research has focused on macular degeneration, macular edema, neurodegeneration, and inflammatory changes in diabetic animal models. (4) Globally, the current authoritative studies have focused on basic research towards the stem cell treatment of diabetic retinopathy. Existing clinical studies are of low quality and have insufficient evidence levels, and their findings have not yet been widely accepted in clinical practice. Major challenges during stem cell transplantation remain, including stem cell heterogeneity, cell delivery, and the effective homing of stem cells to damaged tissue. However, clinical trials examining potential stem cell-based treatments of diabetic retinopathy, including the use of pluripotent stem cells, retinal pigment epithelial cells, bone marrow mesenchymal stem cells, and endothelial progenitor cells, are currently ongoing, and high-quality clinical evidence is likely to appear in the future, to promote clinical transformation.

11.
J Control Release ; 329: 614-623, 2021 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-33011241

RESUMO

Signaling between the CC chemokine receptor 2 (CCR2) with its ligand, monocyte chemoattractant protein-1 (MCP-1) promotes cancer progression by directly stimulating tumor cell proliferation and downregulating the expression of apoptotic proteins. Additionally, the MCP-1/CCR2 signaling axis drives the migration of circulating monocytes into the tumor microenvironment, where they mature into tumor-associated macrophages (TAMs) that promote disease progression through induction of angiogenesis, tissue remodeling, and suppression of the cytotoxic T lymphocyte (CTL) response. In order to simultaneously disrupt MCP-1/CCR2 signaling and target CCR2-expressing cancer cells for drug delivery, KLAK-MCP-1 micelles consisting of a CCR2-targeting peptide sequence (MCP-1 peptide) and the apoptotic KLAKLAK peptide were synthesized. In vitro, KLAK-MCP-1 micelles were observed to bind and induce cytotoxicity to cancer cells through interaction with CCR2. In vivo, KLAK-MCP-1 micelles inhibited tumor growth (34 ± 11%) in a subcutaneous B16F10 murine melanoma model despite minimal tumor accumulation upon intravenous injection. Tumors treated with KLAK-MCP1 demonstrated reduced intratumor CCR2 expression and altered infiltration of TAMs and CTLs as evidenced by immunohistochemical and flow cytometric analysis. These studies highlight the potential application of CCR2-targeted nanotherapeutic micelles in cancer treatment.


Assuntos
Neoplasias , Receptores CCR2 , Animais , Camundongos , Micelas , Monócitos , Peptídeos , Microambiente Tumoral
12.
Mol Metab ; 41: 101045, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32599076

RESUMO

OBJECTIVE: Salt-induced kinase 1 (SIK1) acts as a key modulator in many physiological processes. However, the effects of SIK1 on gluconeogenesis and the underlying mechanisms have not been fully elucidated. In this study, we found that a natural compound phanginin A could activate SIK1 and further inhibit gluconeogenesis. The mechanisms by which phanginin A activates SIK1 and inhibits gluconeogenesis were explored in primary mouse hepatocytes, and the effects of phanginin A on glucose homeostasis were investigated in ob/ob mice. METHODS: The effects of phanginin A on gluconeogenesis and SIK1 phosphorylation were examined in primary mouse hepatocytes. Pan-SIK inhibitor and siRNA-mediated knockdown were used to elucidate the involvement of SIK1 activation in phanginin A-reduced gluconeogenesis. LKB1 knockdown was used to explore how phanginin A activated SIK1. SIK1 overexpression was used to evaluate its effect on gluconeogenesis, PDE4 activity, and the cAMP pathway. The acute and chronic effects of phanginin A on metabolic abnormalities were observed in ob/ob mice. RESULTS: Phanginin A significantly increased SIK1 phosphorylation through LKB1 and further suppressed gluconeogenesis by increasing PDE4 activity and inhibiting the cAMP/PKA/CREB pathway in primary mouse hepatocytes, and this effect was blocked by pan-SIK inhibitor HG-9-91-01 or siRNA-mediated knockdown of SIK1. Overexpression of SIK1 in hepatocytes increased PDE4 activity, reduced cAMP accumulation, and thereby inhibited gluconeogenesis. Acute treatment with phanginin A reduced gluconeogenesis in vivo, accompanied by increased SIK1 phosphorylation and PDE4 activity in the liver. Long-term treatment of phanginin A profoundly reduced blood glucose levels and improved glucose tolerance and dyslipidemia in ob/ob mice. CONCLUSION: We discovered an unrecognized effect of phanginin A in suppressing hepatic gluconeogenesis and revealed a novel mechanism that activation of SIK1 by phanginin A could inhibit gluconeogenesis by increasing PDE4 activity and suppressing the cAMP/PKA/CREB pathway in the liver. We also highlighted the potential value of phanginin A as a lead compound for treating type 2 diabetes.


Assuntos
Diterpenos/farmacologia , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Caesalpinia/metabolismo , AMP Cíclico/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/genética , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Gluconeogênese/efeitos dos fármacos , Glucose/metabolismo , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação , Extratos Vegetais/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/efeitos dos fármacos , Transdução de Sinais
13.
Acta Pharmacol Sin ; 41(11): 1446-1456, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32398684

RESUMO

Dipeptidyl peptidase 4 (DPP4), a ubiquitously expressed protease that cleaves off the N-terminal dipeptide from proline and alanine on the penultimate position, has important roles in many physiological processes. In the present study, experimental colitis was induced in mice receiving 3% dextran sulfate sodium (DSS) in drinking water. We found that mice with DSS-induced colitis had significantly increased intestinal DPP activity and decreased serum DPP activity, suggesting a probable correlation of DPP4 with experimental colitis. Then, we investigated whether sitagliptin, a specific DPP4 inhibitor could protect against DSS-induced colitis. We showed that oral administration of single dose of sitagliptin (30 mg/kg) on D7 remarkably inhibited DPP enzyme activity in both serum and intestine of DSS-induced colitic mice. Repeated administration of sitagliptin (10, 30 mg/kg, bid, from D0 to D8) significantly ameliorated DSS-induced colitis, including reduction of disease activity index (DAI) and body weight loss, improvement of histological score and colon length. Sitagliptin administration dose-dependently increased plasma concentrations of active form of GLP-1 and colonic expression of GLP-2R. Co-administration of GLP-2R antagonist GLP-23-33 (500 µg/kg, bid, sc) abolished the protective effects of sitagliptin in DSS-induced colitic mice. Moreover, sitagliptin administration significantly decreased the ratio of apoptotic cells and increased the ratio of proliferative cells in colon epithelium of DSS-induced colitic mice, and this effect was also blocked by GLP-23-33. Taken together, our results demonstrate that sitagliptin could attenuate DSS-induced experimental colitis and the effects can be attributed to the enhancement of GLP-2 action and the subsequent protective effects on intestinal barrier by inhibiting epithelial cells apoptosis and promoting their proliferation. These findings suggest sitagliptin as a novel therapeutic approach for the treatment of ulcerative colitis.


Assuntos
Colite/prevenção & controle , Inibidores da Dipeptidil Peptidase IV/uso terapêutico , Peptídeo 2 Semelhante ao Glucagon/metabolismo , Fosfato de Sitagliptina/uso terapêutico , Animais , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Colite/induzido quimicamente , Colite/metabolismo , Citocinas/metabolismo , Sulfato de Dextrana , Dipeptidil Peptidase 4/metabolismo , Regulação para Baixo/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Intestinos/efeitos dos fármacos , Masculino , Camundongos Endogâmicos BALB C , Junções Íntimas/metabolismo , Regulação para Cima/efeitos dos fármacos
14.
J Med Chem ; 62(23): 10919-10925, 2019 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-31747282

RESUMO

Although intensively expressed within intestine, the precise roles of intestinal dipeptidyl peptidase IV (DPPIV) in numerous pathologies remain incompletely understood. Here, we first reported a nonsystemic intestine-targeted (NSIT) DPPIV inhibitor with ß-homophenylalanine scaffold, compound 7, which selectively inhibited the intestinal rather than plasmatic DPPIV at an oral dosage as high as 30 mg/kg. We expect that compound 7 could serve as a qualified tissue-selective tool to determine undetected physiological or pathological roles of intestinal DPPIV.


Assuntos
Dipeptidil Peptidase 4 , Inibidores da Dipeptidil Peptidase IV/síntese química , Inibidores da Dipeptidil Peptidase IV/farmacologia , Animais , Células CACO-2 , Fracionamento Celular , Inibidores da Dipeptidil Peptidase IV/química , Sistemas de Liberação de Medicamentos , Desenho de Fármacos , Humanos , Intestinos , Camundongos , Estrutura Molecular , Permeabilidade
15.
Metabolism ; 99: 45-56, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31295453

RESUMO

BACKGROUND AND PURPOSE: TGR5 plays an important role in many physiological processes. However, the functions of TGR5 in the regulation of the glucose metabolism and insulin sensitivity in the skeletal muscles have not been fully elucidated. We synthesized MN6 as a potent and selective TGR5 agonist. Here, the effect of MN6 on insulin resistance in skeletal muscles was evaluated in diet-induced obese (DIO) mice and C2C12 myotubes, and the underlying mechanisms were explored. METHODS: The activation of MN6 on human and mouse TGR5 was evaluated by a cAMP assay in HEK293 cell lines stable expressing hTGR5/CRE or mTGR5/CRE cells. GLP-1 secretion was measured in NCI-H716 cells and CD1 mice. The acute and chronic effects of MN6 on regulating metabolic abnormalities were observed in ob/ob and DIO mice. 2-deoxyglucose uptake was examined in isolated skeletal muscles. Akt phosphorylation, glucose uptake and glycogen synthesis were examined to assess the effects of MN6 on palmitate-induced insulin resistance in C2C12 myotubes. RESULTS: MN6 potently activated human and mouse TGR5 with EC50 values of 15.9 and 17.9 nmol/L, respectively, and stimulated GLP-1 secretion in NCI-H716 cells and CD1 mice. A single oral dose of MN6 significantly decreased the blood glucose levels in ob/ob mice. Treatment with MN6 for 15 days reduced the fasting blood glucose and HbA1c levels in ob/ob mice. MN6 improved glucose and insulin tolerance and enhanced the insulin-stimulated glucose uptake of skeletal muscles in DIO mice. The palmitate-induced impairment of insulin-stimulated Akt phosphorylation, glucose uptake and glycogen synthesis in C2C12 myotubes could be prevented by MN6. The effect of MN6 on palmitate-impaired insulin-stimulated Akt phosphorylation was abolished by siRNA-mediated knockdown of TGR5 or by the inhibition of adenylate cyclase or protein kinase A, suggesting that this effect is dependent on the activation of TGR5 and the cAMP/PKA pathway. CONCLUSIONS: Our study identified that a TGR5 agonist could ameliorate insulin resistance by the cAMP/PKA pathway in skeletal muscles; this uncovered a new effect of the TGR5 agonist on regulating the glucose metabolism and insulin sensitivity in skeletal muscles and further strengthened its potential value for the treatment of type 2 diabetes.


Assuntos
Ciclopropanos/uso terapêutico , Diabetes Mellitus Experimental/tratamento farmacológico , Glucose/metabolismo , Hipoglicemiantes/farmacologia , Resistência à Insulina , Músculo Esquelético/efeitos dos fármacos , Piridinas/uso terapêutico , Quinoxalinas/uso terapêutico , Receptores Acoplados a Proteínas G/agonistas , Animais , Diabetes Mellitus Experimental/metabolismo , Dieta Hiperlipídica , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Células HEK293 , Homeostase , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo
16.
Chem Biol Drug Des ; 90(6): 1122-1133, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28548386

RESUMO

Adipose triglyceride lipase (ATGL) is a rate-limiting enzyme that mobilizes fatty acids from cellular triglyceride stores. Metabolic syndrome, which refers to a group of abnormalities that occur together and increase the risk of coronary artery disease, stroke, type 2 diabetes, and cachexia, can be treated using ATGL-specific inhibitors. Atglistatin (1) is the first small-molecule inhibitor of ATGL. In this study, we designed and synthesized 29 Atglistatin derivatives and evaluated their inhibition of forskolin-stimulated lipolysis in 3T3-L1 adipocytes as an indicator of their potential to inhibit ATGL in adipose tissues. Among all the tested Atglistatin analogs, we previously found that the thiourea compound 9e showed potent ATGL inhibitory activity in vitro, which was much stronger than that of Atglistatin, and its inhibitory activity in vivo was similar to that of Atglistatin. This tool compound could be used to study the pathophysiology and druggability of ATGL in animal models of metabolic disease and cachexia.


Assuntos
Desenho de Fármacos , Inibidores Enzimáticos/síntese química , Lipase/antagonistas & inibidores , Compostos de Fenilureia/química , Adipócitos/citologia , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Animais , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Colforsina/farmacologia , Inibidores Enzimáticos/farmacologia , Glicerol/metabolismo , Lipase/metabolismo , Lipólise/efeitos dos fármacos , Camundongos , Compostos de Fenilureia/farmacologia , Relação Estrutura-Atividade
17.
Endocr Relat Cancer ; 24(4): 157-170, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28264911

RESUMO

Androgen receptor (AR) regulation pathways are essential for supporting the growth and survival of prostate cancer cells. Recently, sub-populations of prostate cancer cells have been identified with stem cell features and are associated with the emergence of treatment-resistant prostate cancer. Here, we explored the function of AR in prostate cancer-associated fibroblasts (CAFs) relative to growth and stem cell-associated characteristics. CAFs were isolated from the murine cPten-/-L prostate cancer model and cultured with human prostate cancer epithelial (hPCa) cells. A murine-specific AR antisense oligonucleotide (ASO) was used to suppress the expression of AR in the CAF cells. CAFs express low, but significant levels of AR relative to fibroblasts derived from non-malignant tissue. CAFs promoted growth and colony formation of hPCa cells, which was attenuated by the suppression of AR expression. Surprisingly, AR-depleted CAFs promoted increased stem cell marker expression in hPCa cells. Interferon gamma (IFN-γ) and macrophage colony-stimulating factor (M-CSF) were increased in AR-depleted CAF cells and exhibited similar effects on stem cell marker expression as seen in the CAF co-culture systems. Clinically, elevated IFN-γ expression was found to correlate with histologic grade in primary prostate cancer samples. In summary, AR and androgen-dependent signaling are active in CAFs and exert significant effects on prostate cancer cells. IFN-γ and M-CSF are AR-regulated factors secreted by CAF cells, which promote the expression of stem cell markers in prostate cancer epithelial cells. Understanding how CAFs and other constituents of stromal tissue react to anti-cancer therapies may provide insight into the development and progression of prostate cancer.


Assuntos
Fibroblastos Associados a Câncer/metabolismo , Neoplasias da Próstata/metabolismo , Receptores Androgênicos/metabolismo , Animais , Linhagem Celular Tumoral , Técnicas de Cocultura , Citocinas/metabolismo , Humanos , Masculino , Camundongos Knockout , PTEN Fosfo-Hidrolase/genética , Antígeno Prostático Específico/metabolismo , Neoplasias da Próstata/patologia
18.
Acta Pharmacol Sin ; 37(10): 1359-1369, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27264313

RESUMO

AIM: TGR5 agonists stimulate intestinal glucagon-like peptide-1 (GLP-1) release, but systemic exposure causes unwanted side effects, such as gallbladder filling. In the present study, linagliptin, a DPP-4 inhibitor with a large molecular weight and polarity, and MN6, a previously described TGR5 agonist, were linked to produce OL3, a novel low-absorbed TGR5 agonist with reduced side-effects and dual function in lowering blood glucose by activation of TGR5 and inhibition of DPP-4. METHODS: TGR5 activation was assayed in HEK293 cells stably expressing human or mouse TGR5 and a CRE-driven luciferase gene. DPP-4 inhibition was assessed based on the rate of hydrolysis of a surrogate substrate. GLP-1 secretion was measured in human enteroendocrine NCI-H716 cells. OL3 permeability was tested in Caco-2 cells. Acute glucose-lowering effects of OL3 were evaluated in ICR and diabetic ob/ob mice. RESULTS: OL3 activated human and mouse TGR5 with an EC50 of 86.24 and 17.36 nmol/L, respectively, and stimulated GLP-1 secretion in human enteroendocrine NCI-H716 cells (3-30 µmol/L). OL3 inhibited human and mouse DPP-4 with IC50 values of 18.44 and 69.98 µmol/L, respectively. Low permeability of OL3 was observed in Caco-2 cells. In ICR mice treated orally with OL3 (150 mg/kg), the serum OL3 concentration was 101.10 ng/mL at 1 h, and decreased to 13.38 ng/mL at 5.5 h post dose, confirming the low absorption of OL3 in vivo. In ICR mice and ob/ob mice, oral administration of OL3 significantly lowered the blood glucose levels, which was a synergic effect of activating TGR5 that stimulated GLP-1 secretion in the intestine and inhibiting DPP-4 that cleaved GLP-1 in the plasma. In ICR mice, oral administration of OL3 did not cause gallbladder filling. CONCLUSION: OL3 is a low-absorbed TGR5 agonist that lowers blood glucose without inducing gallbladder filling. This study presents a new strategy in the development of potent TGR5 agonists in treating type 2 diabetes, which target to the intestine to avoid systemic side effects.


Assuntos
Glicemia/metabolismo , Inibidores da Dipeptidil Peptidase IV/farmacologia , Hipoglicemiantes/farmacologia , Quinoxalinas/farmacologia , Receptores Acoplados a Proteínas G/agonistas , Xantinas/farmacologia , Animais , Células CACO-2 , Inibidores da Dipeptidil Peptidase IV/efeitos adversos , Inibidores da Dipeptidil Peptidase IV/metabolismo , Humanos , Hipoglicemiantes/efeitos adversos , Hipoglicemiantes/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos ICR , Permeabilidade , Quinoxalinas/metabolismo , Quinoxalinas/farmacocinética , Xantinas/metabolismo , Xantinas/farmacocinética
19.
Int J Biol Sci ; 11(11): 1272-80, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26435693

RESUMO

The role of AMP-activated protein kinase (AMPK) in pancreatic ß-cell apoptosis is still controversial, and the reasons for the discrepancies have not been clarified. In the current study, we observed the effects of two well-known AMPK activators 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR) and metformin, on apoptosis in rat insulinoma INS-1E cells, and further explored their possible mechanisms. Both AICAR and metformin protected INS-1E cells from palmitate-induced apoptosis, as reflected by decreases in both cleaved caspase 3 protein expression and caspase 3/7 activity, and these protective effects were abrogated by AMPK inhibitor compound C. The protective action of AICAR was probably mediated by the suppression of triacylglycerol accumulation, increase in Akt phosphorylation and decrease in p38 MAPK phosphorylation, while metformin might exert its protective effect on INS-1E cells by decreases in both JNK and p38 MAPK phosphorylation. All these regulations were dependent on AMPK activation. However, under standard culture condition, AICAR increased JNK phosphorylation and promoted INS-1E cell apoptosis in an AMPK-dependent manner, whereas metformin showed no effect on apoptosis. Our study revealed that AMPK activators AICAR and metformin exhibited different effects on INS-1E cell apoptosis under different culture conditions, which might be largely attributed to different downstream mediators. Our results provided new and informative clues for better understanding of the role of AMPK in ß-cell apoptosis.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Aminoimidazol Carboxamida/análogos & derivados , Metformina/farmacologia , Palmitatos/farmacologia , Ribonucleotídeos/farmacologia , Aminoimidazol Carboxamida/farmacologia , Animais , Apoptose/efeitos dos fármacos , Western Blotting , Linhagem Celular Tumoral , Metabolismo dos Lipídeos/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Ratos
20.
J Mol Endocrinol ; 55(3): 197-207, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26373795

RESUMO

Exercise enhances numerous signalling pathways and activates substrate metabolism in skeletal muscle. Small molecule compounds that activate these cellular responses have been shown to recapitulate the metabolic benefits of exercise. In this study, a histone deacetylase (HDAC) inhibitor, HC toxin, was investigated as a small molecule compound that activates exercise-induced adaptations. In C2C12 myotubes, HC toxin treatment activated two exercise-stimulated pathways: AMP-activated protein kinase (AMPK) and Akt pathways. HC toxin increased the protein content and phosphorylation of insulin receptor substrate 1 as well as the activation of downstream Akt signalling. The effects of HC toxin on IRS1-Akt signalling were PI3K-dependent as wortmannin abolishes its effects on IRS1 protein accumulation and Akt phosphorylation. HC toxin-induced Akt activation was sufficient to enhance downstream mTOR complex 1 (mTORC1) signalling including p70S6K and S6, which were consistently abolished by PI3K inhibition. Insulin-stimulated glucose uptake, glycolysis, mitochondrial respiration and fatty acid oxidation were also enhanced in HC toxin-treated myotubes. When myotubes were challenged with serum starvation for the induction of atrophy, HC toxin treatment prevented the induction of genes that are involved in autophagy and proteasomal proteolysis. Conversely, IRS1-Akt signalling was not induced by HC toxin in several hepatoma cell lines, providing evidence for a favourable safety profile of this small molecule. These data highlight the potential of HDAC inhibitors as a novel class of small molecules for the induction of exercise-like signalling pathways and metabolism.


Assuntos
Inibidores de Histona Desacetilases/farmacologia , Proteínas Substratos do Receptor de Insulina/metabolismo , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares Esqueléticas/metabolismo , Peptídeos Cíclicos/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Atrofia/tratamento farmacológico , Atrofia/genética , Linhagem Celular , Relação Dose-Resposta a Droga , Espaço Extracelular/metabolismo , Glucose/metabolismo , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Complexos Multiproteicos/metabolismo , Consumo de Oxigênio , Fosfatidilinositol 3-Quinases/metabolismo , Serina-Treonina Quinases TOR/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA