Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Proc Biol Sci ; 287(1935): 20201388, 2020 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-32993470

RESUMO

The structure of a genome can be described at its simplest by the number of chromosomes and the sex chromosome system it contains. Despite over a century of study, the evolution of genome structure on this scale remains recalcitrant to broad generalizations that can be applied across clades. To address this issue, we have assembled a dataset of 823 karyotypes from the insect group Polyneoptera. This group contains orders with a range of variations in chromosome number, and offer the opportunity to explore the possible causes of these differences. We have analysed these data using both phylogenetic and taxonomic approaches. Our analysis allows us to assess the importance of rates of evolution, phylogenetic history, sex chromosome systems, parthenogenesis and genome size on variation in chromosome number within clades. We find that fusions play a key role in the origin of new sex chromosomes, and that orders exhibit striking differences in rates of fusions, fissions and polyploidy. Our results suggest that the difficulty in finding consistent rules that govern evolution at this scale may be due to the presence of many interacting forces that can lead to variation among groups.


Assuntos
Evolução Molecular , Insetos , Cromossomos Sexuais , Animais , Feminino , Tamanho do Genoma , Cariótipo , Partenogênese , Filogenia , Poliploidia
2.
J Evol Biol ; 33(10): 1507-1511, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32894786

RESUMO

Maternally transmitted bacterial symbionts can be important mediators of the interactions between insect herbivores and their foodplants. These symbionts are often facultative (present in some host individuals but not others) and can have large effects on their host's phenotype, thus giving rise to heritable variation upon which selection can act. In the cowpea aphid (Aphis craccivora), it has been established that the facultative endosymbiont Arsenophonus improves aphid performance on black locust trees (Robinia pseudoacacia) but not on fava (Vicia faba). Here, we tested whether this fitness differential translated into contemporaneous evolution of aphid populations associated with the different plants. In a laboratory study lasting 16 weeks, we found that the frequency of Arsenophonus-infected individuals significantly increased over time for aphid populations on black locust but declined for aphid populations on fava. By the end of the experiment, Arsenophonus infection was >3× more common on black locust than fava, which is comparable to previously described infection frequencies in natural field populations. Our results clearly demonstrate that aphid populations with mixed facultative symbiont infection status can rapidly evolve in response to the selective environments imposed by different host plants. This selection differential may be a sufficient explanation for the global association between Arsenophonus-infected cowpea aphids and black locust trees, without invoking additional assortative mechanisms. Because the aphid and plant originate from different parts of the world, we further hypothesize that Arsenophonus infection may have acted as a preadaptation that has promoted functional specialization of infected aphids on a novel host plant.


Assuntos
Afídeos/genética , Evolução Biológica , Gammaproteobacteria/fisiologia , Herbivoria , Seleção Genética , Animais , Afídeos/microbiologia , Robinia , Simbiose , Vicia faba
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA