Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Trends Endocrinol Metab ; 34(10): 583-585, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37625920

RESUMO

Increasing evidence suggests that the brain plays a key role in glucose homeostasis, making it a potential target for the treatment of type 2 diabetes (T2D). Sun et al. recently reported that intracerebroventricular (ICV) administration of a single dose of fibroblast growth factor 4 (FGF4) can induce sustained T2D remission in mouse models in the absence of any risk of hypoglycemia.


Assuntos
Diabetes Mellitus Tipo 2 , Hiperglicemia , Hipoglicemia , Animais , Camundongos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Fator 4 de Crescimento de Fibroblastos , Hiperglicemia/tratamento farmacológico , Obesidade/tratamento farmacológico
2.
Stem Cell Res Ther ; 10(1): 318, 2019 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-31690344

RESUMO

BACKGROUND: Retinal inflammation affecting the neurovascular unit may play a role in the development of visual deficits following mild traumatic brain injury (mTBI). We have shown that concentrated conditioned media from adipose tissue-derived mesenchymal stem cells (ASC-CCM) can limit retinal damage from blast injury and improve visual function. In this study, we addressed the hypothesis that TNFα-stimulated gene-6 (TSG-6), an anti-inflammatory protein released by mesenchymal cells, mediates the observed therapeutic potential of ASCs via neurovascular modulation. METHODS: About 12-week-old C57Bl/6 mice were subjected to 50-psi air pulse on the left side of the head overlying the forebrain resulting in an mTBI. Age-matched sham blast mice served as control. About 1 µl of ASC-CCM (siControl-ASC-CCM) or TSG-6 knockdown ASC-CCM (siTSG-6-ASC-CCM) was delivered intravitreally into both eyes. One month following injection, the ocular function was assessed followed by molecular and immunohistological analysis. In vitro, mouse microglial cells were used to evaluate the anti-inflammatory effect of ASC-CCM. Efficacy of ASC-CCM in normalizing retinal vascular permeability was assessed using trans-endothelial resistance (TER) and VE-cadherin expression in the presence of TNFα (1 ng/ml). RESULTS: We show that intravitreal injection of ASC-CCM (siControl-ASC-CCM) but not the TSG-6 knockdown ASC-CCM (siTSG-6-ASC-CCM) mitigates the loss of visual acuity and contrast sensitivity, retinal expression of genes associated with microglial and endothelial activation, and retinal GFAP immunoreactivity at 4 weeks after blast injury. In vitro, siControl-ASC-CCM but not the siTSG-6-ASC-CCM not only suppressed microglial activation and STAT3 phosphorylation but also protected against TNFα-induced endothelial permeability as measured by transendothelial electrical resistance and decreased STAT3 phosphorylation. CONCLUSIONS: Our findings suggest that ASCs respond to an inflammatory milieu by secreting higher levels of TSG-6 that mediates the resolution of the inflammatory cascade on multiple cell types and correlates with the therapeutic potency of the ASC-CCM. These results expand our understanding of innate mesenchymal cell function and confirm the importance of considering methods to increase the production of key analytes such as TSG-6 if mesenchymal stem cell secretome-derived biologics are to be developed as a treatment solution against the traumatic effects of blast injuries and other neurovascular inflammatory conditions of the retina.


Assuntos
Tecido Adiposo/citologia , Lesões Encefálicas Traumáticas/fisiopatologia , Lesões Encefálicas Traumáticas/terapia , Moléculas de Adesão Celular/metabolismo , Meios de Cultivo Condicionados/farmacologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Neovascularização Fisiológica/efeitos dos fármacos , Visão Ocular/efeitos dos fármacos , Animais , Forma Celular/efeitos dos fármacos , Citocinas/farmacologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Endotélio/efeitos dos fármacos , Endotélio/patologia , Células Ependimogliais/efeitos dos fármacos , Células Ependimogliais/metabolismo , Proteína Glial Fibrilar Ácida/metabolismo , Humanos , Inflamação/genética , Inflamação/patologia , Interferon gama/farmacologia , Lipopolissacarídeos/farmacologia , Camundongos Endogâmicos C57BL , Microglia/efeitos dos fármacos , Microglia/metabolismo , Modelos Biológicos , Fosforilação/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Retina/efeitos dos fármacos , Retina/patologia , Fator de Transcrição STAT3/metabolismo , Fator de Necrose Tumoral alfa/toxicidade
3.
Stem Cell Res Ther ; 9(1): 322, 2018 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-30463601

RESUMO

BACKGROUND: Early-stage diabetic retinopathy (DR) is characterized by neurovascular defects. In this study, we hypothesized that human adipose-derived stem cells (ASCs) positive for the pericyte marker CD140b, or their secreted paracrine factors, therapeutically rescue early-stage DR features in an Ins2Akita mouse model. METHODS: Ins2Akita mice at 24 weeks of age received intravitreal injections of CD140b-positive ASCs (1000 cells/1 µL) or 20× conditioned media from cytokine-primed ASCs (ASC-CM, 1 µL). Age-matched wildtype mice that received saline served as controls. Visual function experiments and histological analyses were performed 3 weeks post intravitreal injection. Biochemical and molecular analyses assessed the ASC-CM composition and its biological effects. RESULTS: Three weeks post-injection, Ins2Akita mice that received ASCs had ameliorated decreased b-wave amplitudes and vascular leakage but failed to improve visual acuity, whereas Ins2Akita mice that received ASC-CM demonstrated amelioration of all aforementioned visual deficits. The ASC-CM group demonstrated partial amelioration of retinal GFAP immunoreactivity and DR-related gene expression but the ASC group did not. While Ins2Akita mice that received ASCs exhibited occasional (1 in 8) hemorrhagic retinas, mice that received ASC-CM had no adverse complications. In vitro, ASC-CM protected against TNFα-induced retinal endothelial permeability as measured by transendothelial electrical resistance. Biochemical and molecular analyses demonstrated several anti-inflammatory proteins including TSG-6 being highly expressed in cytokine-primed ASC-CM. CONCLUSIONS: ASCs or their secreted factors mitigate retinal complications of diabetes in the Ins2Akita model. Further investigation is warranted to determine whether ASCs or their secreted factors are safe and effective therapeutic modalities long-term as current locally delivered therapies fail to effectively mitigate the progression of early-stage DR. Nonetheless, our study sheds new light on the therapeutic mechanisms of adult stem cells, with implications for assessing relative risks/benefits of experimental regenerative therapies for vision loss.


Assuntos
Tecido Adiposo/citologia , Diabetes Mellitus Experimental/complicações , Retinopatia Diabética/terapia , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Transplante de Células-Tronco Mesenquimais , Tecido Adiposo/metabolismo , Animais , Antígenos de Superfície/química , Antígenos de Superfície/uso terapêutico , Meios de Cultura Livres de Soro/química , Meios de Cultura Livres de Soro/farmacologia , Retinopatia Diabética/etiologia , Retinopatia Diabética/patologia , Humanos , Injeções Intravítreas , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Trombomodulina
4.
Exp Biol Med (Maywood) ; 243(12): 976-984, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30114984

RESUMO

Stress-associated premature senescence plays a major role in retinal diseases. In this study, we investigated the relationship between endothelial dysfunction, endoplasmic reticulum (ER) stress, and cellular senescence in the development of retinal dysfunction. We tested the hypothesis that constant endothelial activation by transmembrane tumor necrosis factor-α (tmTNF-α) exacerbates age-induced visual deficits via senescence-mediated ER stress in this model. To address this, we employed a mouse model of chronic vascular activation using endothelial-specific TNF-α-expressing (tie2-TNF) mice at 5 and 10 months of age. Visual deficits were exhibited by tie2-TNF mice at both 5 months and 10 months of age, with the older mice showing statistically significant loss of visual acuity compared with tie2-TNF mice at age 5 months. The neural defects, as measured by electroretinogram (ERG), also followed a similar trend in an age-dependent fashion, with 10-month-old tie2-TNF mice showing the greatest decrease in "b" wave amplitude at 25 cd.s.m2 compared with age-matched wildtype (WT) mice and five-month-old tie2-TNF mice. While gene and protein expression from the whole retinal extracts demonstrated increased inflammatory (Icam1, Ccl2), stress-associated premature senescence (p16, p21, p53), and ER stress (Grp78, p-Ire1α, Chop) markers in five-month-old tie2-TNF mice compared with five-month-old WT mice, a further increase was seen in 10-month-old tie2-TNF mice. Our data demonstrate that tie2-TNF mice exhibit age-associated increases in visual deficits, and these data suggest that inflammatory endothelial activation is at least partly at play. Given the correlation of increased premature senescence and ER stress in an age-dependent fashion, with the loss of visual functions and increased endothelial activation, our data suggest a possible self-enhanced loop of unfolded protein response pathways and senescence in propagating neurovascular defects in this model. Impact statement Vision loss in most retinal diseases affects the quality of life of working age adults. Using a novel animal model that displays constant endothelial activation by tmTNF-α, our results demonstrate exacerbated age-induced visual deficits via premature senescence-mediated ER stress. We have compared mice of 5 and 10 months of age, with highly relevant human equivalencies of approximately 35- and 50-year-old patients, representing mature adult and middle-aged subjects, respectively. Our studies suggest a possible role for a self-enhanced loop of ER stress pathways and senescence in the propagation of retinal neurovascular defects, under conditions of constant endothelial activation induced by tmTNF-α signaling.


Assuntos
Estresse do Retículo Endoplasmático , Retículo Endoplasmático/metabolismo , Receptor TIE-2/genética , Fator de Necrose Tumoral alfa/metabolismo , Transtornos da Visão/genética , Visão Ocular/genética , Animais , Células Cultivadas , Senescência Celular , Eletrorretinografia , Chaperona BiP do Retículo Endoplasmático , Células Endoteliais/citologia , Feminino , Inflamação , Molécula 1 de Adesão Intercelular/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Reflexo , Transdução de Sinais
5.
Int J Mol Sci ; 19(7)2018 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-29997321

RESUMO

Blast concussions are a common injury sustained in military combat today. Inflammation due to microglial polarization can drive the development of visual defects following blast injuries. In this study, we assessed whether anti-inflammatory factors released by the mesenchymal stem cells derived from adipose tissue (adipose stem cells, ASC) can limit retinal tissue damage and improve visual function in a mouse model of visual deficits following mild traumatic brain injury. We show that intravitreal injection of 1 µL of ASC concentrated conditioned medium from cells pre-stimulated with inflammatory cytokines (ASC-CCM) mitigates loss of visual acuity and contrast sensitivity four weeks post blast injury. Moreover, blast mice showed increased retinal expression of genes associated with microglial activation and inflammation by molecular analyses, retinal glial fibrillary acidic protein (GFAP) immunoreactivity, and increased loss of ganglion cells. Interestingly, blast mice that received ASC-CCM improved in all parameters above. In vitro, ASC-CCM not only suppressed microglial activation but also protected against Tumor necrosis alpha (TNFα) induced endothelial permeability as measured by transendothelial electrical resistance. Biochemical and molecular analyses demonstrate TSG-6 is highly expressed in ASC-CCM from cells pre-stimulated with TNFα and IFNγ but not from unstimulated cells. Our findings suggest that ASC-CCM mitigates visual deficits of the blast injury through their anti-inflammatory properties on activated pro-inflammatory microglia and endothelial cells. A regenerative therapy for immediate delivery at the time of injury may provide a practical and cost-effective solution against the traumatic effects of blast injuries to the retina.


Assuntos
Anti-Inflamatórios/administração & dosagem , Traumatismos por Explosões/complicações , Concussão Encefálica/etiologia , Meios de Cultivo Condicionados/química , Células-Tronco Mesenquimais/metabolismo , Retinite/tratamento farmacológico , Transtornos da Visão/tratamento farmacológico , Tecido Adiposo/citologia , Tecido Adiposo/metabolismo , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Concussão Encefálica/complicações , Células Cultivadas , Modelos Animais de Doenças , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Proteína Glial Fibrilar Ácida/metabolismo , Humanos , Injeções Intravítreas , Masculino , Células-Tronco Mesenquimais/citologia , Camundongos , Microglia/efeitos dos fármacos , Microglia/metabolismo , Retinite/etiologia , Transtornos da Visão/etiologia
6.
J Cell Biochem ; 119(10): 8460-8471, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30054947

RESUMO

Diabetic retinopathy (DR) is the leading cause of vision loss among working-age adults. The interplay between hyperglycemia and endothelial activation in inducing endoplasmic reticulum (ER) stress pathways and visual deficits in DR is not fully understood. To address this, we used a mouse model of chronic vascular activation using endothelial-specific tumor necrosis factor-α (TNF-α)-expressing (tie2-TNF) mice to induce diabetes with streptozotocin. At 4 weeks post streptozotocin, a significant 2-fold to 10-fold increase in retinal neurovascular inflammatory gene transcript response in tie2-TNF mice was further increased in diabetic tie2-TNF mice. A decrease in visual acuity and scotopic b-wave amplitude in tie2-TNF mice was further accentuated in diabetic tie2-TNF mice and these changes correlated with a multi-fold increase in retinal ER stress markers and a reduction in adherens junctions. Cultured retinal endothelial cells showed a significant decrease in trans-endothelial resistance as well as VE-cadherin expression under TNF-α and high glucose stress. These changes were partly rescued by tauroursodeoxycholic acid, a potent ER stress inhibitor. Taken together, constant endothelial activation induced by TNF-α further exacerbated by hyperglycemia results in activation of ER stress and chronic proinflammation in a feed forward loop ultimately resulting in endothelial junction protein alterations leading to visual deficits in the retina. Inhibition of ER stress and endothelial activation may prove to be a novel therapeutic target in DR.


Assuntos
Retinopatia Diabética/metabolismo , Estresse do Retículo Endoplasmático/fisiologia , Retículo Endoplasmático/metabolismo , Células Endoteliais/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Análise de Variância , Animais , Linhagem Celular , Diabetes Mellitus Experimental/induzido quimicamente , Modelos Animais de Doenças , Eletrorretinografia , Expressão Gênica , Humanos , Inflamação/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Receptor TIE-2/genética , Retina/patologia , Estreptozocina , Acuidade Visual/fisiologia
7.
Clin Epigenetics ; 8: 125, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27904654

RESUMO

BACKGROUND: A role of proinflammation has been implicated in the pathogenesis of diabetes, but the up-stream regulatory signals and molecular signatures are poorly understood. While histone modifications such as changes in histone deacetylase (HDAC) are emerging as novel epigenetic biomarkers, there is lack of studies to demonstrate their clinical relevance in diabetes. Therefore, we investigated the extent of HDAC machinery and inflammatory signals in peripheral blood mononuclear cells (PBMCs) from patients with type 2 diabetes mellitus (T2DM) compared to control subjects. RESULTS: HDAC3 activity was significantly (p < 0.05) increased in patients with T2DM compared to control subjects. While subtypes of HDACs were differentially expressed at their transcriptional levels in patients with type 2 diabetes, the most prominent observation is the significantly (p < 0.05) elevated messenger RNA (mRNA) levels of HDAC3. Expression levels of Sirt1 which represents the class III HDAC were decreased significantly in T2DM (p < 0.05). Plasma levels of both TNF-α and IL-6 were significantly higher (p < 0.05) in patients with type 2 diabetes compared to control subjects. Among the proinflammatory mediators, the mRNA expression of MCP-1, IL1-ß, NFκB, TLR2, and TLR4 were also significantly (p < 0.05) increased in T2DM. Transcriptional levels of DBC1 (deleted in breast cancer 1, which is a negative regulator of HDAC3) were seen significantly reduced in PBMCs from T2DM. Interestingly, HDAC3 activity/HDAC3 mRNA levels positively correlated to proinflammation, poor glycemic control, and insulin resistance. CONCLUSIONS: Striking message from this study is that while looking for anti-inflammatory strategies and drugs with novel mode of action for T2DM, discovering and designing specific inhibitors targeted to HDAC3 appears promising.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Citocinas/sangue , Diabetes Mellitus Tipo 2/metabolismo , Histona Desacetilases/metabolismo , Resistência à Insulina , Sirtuína 1/genética , Adulto , Índice de Massa Corporal , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/imunologia , Epigênese Genética , Feminino , Regulação da Expressão Gênica , Histona Desacetilases/sangue , Histona Desacetilases/genética , Humanos , Masculino , Pessoa de Meia-Idade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA