Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Anal Chem ; 96(18): 6914-6921, 2024 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-38655666

RESUMO

BACKGROUND: There are important unmet clinical needs to develop cell enrichment technologies to enable unbiased label-free isolation of both single cell and clusters of circulating tumor cells (CTCs) manifesting heterogeneous lineage specificity. Here, we report a pilot study based on the microfluidic acoustophoresis enrichment of CTCs using the CellSearch CTC assay as a reference modality. METHODS: Acoustophoresis uses an ultrasonic standing wave field to separate cells based on biomechanical properties (size, density, and compressibility), resulting in inherently label-free and epitope-independent cell enrichment. Following red blood cell lysis and paraformaldehyde fixation, 6 mL of whole blood from 12 patients with metastatic prostate cancer and 20 healthy controls were processed with acoustophoresis and subsequent image cytometry. RESULTS: Acoustophoresis enabled enrichment and characterization of phenotypic CTCs (EpCAM+, Cytokeratin+, DAPI+, CD45-/CD66b-) in all patients with metastatic prostate cancer and detected CTC-clusters composed of only CTCs or heterogeneous aggregates of CTCs clustered with various types of white blood cells in 9 out of 12 patients. By contrast, CellSearch did not detect any CTC clusters, but detected comparable numbers of phenotypic CTCs as acoustophoresis, with trends of finding a higher number of CTCs using acoustophoresis. CONCLUSION: Our preliminary data indicate that acoustophoresis provides excellent possibilities to detect and characterize CTC clusters as a putative marker of metastatic disease and outcomes. Moreover, acoustophoresis enables the sensitive label-free enrichment of cells with epithelial phenotypes in blood and offers opportunities to detect and characterize CTCs undergoing epithelial-to-mesenchymal transitioning and lineage plasticity.


Assuntos
Separação Celular , Células Neoplásicas Circulantes , Neoplasias da Próstata , Humanos , Masculino , Células Neoplásicas Circulantes/patologia , Neoplasias da Próstata/patologia , Neoplasias da Próstata/sangue , Separação Celular/métodos , Acústica , Projetos Piloto , Metástase Neoplásica , Técnicas Analíticas Microfluídicas
2.
medRxiv ; 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38106097

RESUMO

Background: There are important unmet clinical needs to develop cell enrichment technologies to enable unbiased label-free isolation of both single cell and clusters of circulating tumor cells (CTCs) manifesting heterogeneous lineage specificity. Here, we report a pilot study based on microfluidic acoustophoresis enrichment of CTCs using the CellSearch CTC assay as a reference modality. Methods: Acoustophoresis uses an ultrasonic standing wave field to separate cells based on biomechanical properties (size, density, and compressibility) resulting in inherently label-free and epitope-independent cell enrichment. Following red blood cell lysis and paraformaldehyde fixation, 6 mL of whole blood from 12 patients with metastatic prostate cancer and 20 healthy controls were processed with acoustophoresis and subsequent image cytometry. Results: Acoustophoresis enabled enrichment and characterization of phenotypic CTCs (EpCAM+, Cytokeratin+, DAPI+, CD45-/CD66b-) in all patients with metastatic prostate cancer and detected CTC-clusters composed of only CTCs or heterogenous aggregates of CTCs clustered with various types of white blood cells in 9 out of 12 patients. By contrast, CellSearch did not detect any CTC-clusters, but detected comparable numbers of phenotypic CTCs as acoustophoresis, with trends of finding higher number of CTCs using acoustophoresis. Conclusion: Our preliminary data indicate that acoustophoresis provides excellent possibilities to detect and characterize CTC-clusters as a putative marker of metastatic disease and outcomes. Moreover, acoustophoresis enables sensitive label-free enrichment of cells with epithelial phenotype in blood and offers opportunities to detect and characterize CTCs undergoing epithelial-to-mesenchymal transitioning and lineage plasticity.

3.
Anal Chem ; 93(51): 17076-17085, 2021 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-34913344

RESUMO

There is an unmet clinical need to extract living circulating tumor cells (CTCs) for functional studies and in vitro expansion to enable drug testing and predict responses to therapy in metastatic cancer. Here, we present a novel two-step acoustophoresis (A2) method for isolation of unfixed, viable cancer cells from red blood cell (RBC) lysed whole blood. The A2 method uses an initial acoustofluidic preseparation step to separate cells based on their acoustic mobility. This acoustofluidic step enriches viable cancer cells in a central outlet, but a significant number of white blood cells (WBCs) remain in the central outlet fraction due to overlapping acoustophysical properties of these viable cells. A subsequent purging step was employed to remove contaminating WBCs through negative selection acoustophoresis with anti-CD45-functionalized negative acoustic contrast particles. We processed 1 mL samples of 1:1 diluted RBC lysed whole blood mixed with 10 000 DU145 cells through the A2 method. Additional experiments were performed using 1000 DU145 cells spiked into 1.5 × 106 WBCs in 1 mL of buffer to further elucidate the dynamic range of the method. Using samples with 10 000 DU145 cells, we obtained 459 ± 188-fold depletion of WBC and 42% recovery of viable cancer cells. Based on spiked samples with 1000 DU145 cells, our cancer cell recovery was 28% with 247 ± 156-fold WBC depletion corresponding to a depletion efficacy of ≥99.5%. The novel A2 method provides extensive elimination of WBCs combined with the gentle recovery of viable cancer cells suitable for downstream functional analyses and in vitro culture.


Assuntos
Células Neoplásicas Circulantes , Acústica , Separação Celular , Humanos , Contagem de Leucócitos , Leucócitos
4.
Anal Chem ; 89(22): 11954-11961, 2017 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-29087172

RESUMO

Enumeration of circulating tumor cells (CTCs) predicts overall survival and treatment response in metastatic cancer, but as many commercialized assays isolate CTCs positive for epithelial cell markers alone, CTCs with little or no epithelial cell adhesion molecule (EpCAM) expression stay undetected. Therefore, CTC enrichment and isolation by label-free methods based on biophysical rather than biochemical properties could provide a more representative spectrum of CTCs. Here, we report on a clinical-scale automated acoustic microfluidic platform processing 5 mL of erythrocyte-depleted paraformaldehyde (PFA)-fixed blood (diluted 1:2) at a flow rate of 75 µL/min, recovering 43/50 (86 ± 2.3%) breast cancer cell line cells (MCF7), with 0.11% cancer cell purity and 162-fold enrichment in close to 2 h based on intrinsic biophysical cell properties. Adjustments of the voltage settings aimed at higher cancer cell purity in the central outlet provided 0.72% cancer cell purity and 1445-fold enrichment that resulted in 62 ± 8.7% cancer cell recovery. Similar rates of cancer-cell recovery, cancer-cell purity, and fold-enrichment were seen with both prostate cancer (DU145, PC3) and breast cancer (MCF7) cell line cells. We identified eosinophil granulocytes as the predominant white blood cell (WBC) contaminant (85%) in the enriched cancer-cell fraction. Processing of viable cancer cells in erythrocyte-depleted blood provided slightly reduced results as to fixed cells (77% cancer cells in the enriched cancer cell fraction, with 0.2% WBC contamination). We demonstrate feasibility of enriching either PFA-fixed or viable cancer cells with a clinical-scale acoustic microfluidic platform that can be adjusted to meet requirements for either high cancer-cell recovery or higher purity and can process 5 mL blood samples in close to 2 h.


Assuntos
Acústica , Separação Celular/métodos , Técnicas Analíticas Microfluídicas , Células Neoplásicas Circulantes/metabolismo , Acústica/instrumentação , Biomarcadores/sangue , Transição Epitelial-Mesenquimal , Humanos , Células MCF-7 , Técnicas Analíticas Microfluídicas/instrumentação , Células Neoplásicas Circulantes/química , Células PC-3 , Propriedades de Superfície
5.
Micromachines (Basel) ; 7(6)2016 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-30404275

RESUMO

Acoustophoresis is a technique that applies ultrasonic standing wave forces in a microchannel to sort cells depending on their physical properties in relation to the surrounding media. Cell handling and separation for research and clinical applications aims to efficiently separate specific cell populations. Here, we investigated the sorting of CD8 lymphocytes from peripheral blood progenitor cell (PBPC) products by affinity-bead-mediated acoustophoresis. PBPC samples were obtained from healthy donors (n = 4) and patients (n = 18). Mononuclear cells were labeled with anti-CD8-coated magnetic beads and sorted on an acoustophoretic microfluidic device and by standard magnetic cell sorting as a reference method. CD8 lymphocytes were acoustically sorted with a mean purity of 91% ± 8% and a median separation efficiency of 63% (range 15.1%⁻90.5%) as compared to magnetic sorting (purity 91% ± 14%, recovery 29% (range 5.1%⁻47.3%)). The viability as well as the proliferation capacity of sorted lymphocytes in the target fraction were unimpaired and, furthermore, hematopoietic progenitor cell assay revealed a preserved clonogenic capacity post-sorting. Bead-mediated acoustophoresis can, therefore, be utilized to efficiently sort less frequent CD8+ lymphocytes from PBPC products in a continuous flow mode while maintaining cell viability and functional capacity of both target and non-target fractions.

6.
Cytometry A ; 85(11): 933-41, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25053536

RESUMO

Processing of peripheral blood progenitor cells (PBPC) for clinical transplantation or research applications aims to effectively isolate or deplete specific cell populations, utilizing primarily magnetic or fluorescence activated sorting methods. Here, we investigated the performance of microfluidic acoustophoresis for the separation of lymphocyte subsets from PBPC, and present a novel method for affinity-bead-mediated acoustic separation of cells which can otherwise not be acoustically discriminated. As the acoustic force on a particle depends on particle size, density and compressibility, targeting of cells by affinity specific beads will generate cell-bead complexes that exhibit distinct acoustic properties relative to nontargeted cells and are, thus, possible to isolate. To demonstrate this, PBPC samples (n = 22) were obtained from patients and healthy donors. Following density gradient centrifugation, cells were labeled with anti-CD4-coated magnetic beads (Dynal) and isolated by acoustophoresis and, for comparison, standard magnetic cell sorting technique in parallel. Targeted CD4+ lymphocytes were acoustically isolated with a mean (±SD) purity of 87 ± 12%, compared with 96 ± 3% for control magnetic sorting. Viability of sorted cells was 95 ± 4% (acoustic) and 97 ± 3% (magnetic), respectively. The mean acoustic separation efficiency of CD4+ lymphocytes to the target fraction was 65 ± 22%, compared with a mean CD4+ lymphocyte recovery of 56 ± 15% for magnetic sorting. Functional testing of targeted CD4+ lymphocytes demonstrated unimpaired mitogen-mediated proliferation capacity and cytokine production. Hematopoietic progenitor cell assays revealed a preserved colony forming ability of nontarget cells post sorting. We conclude that the acoustophoresis platform can be utilized to efficiently isolate bead-labeled CD4+ lymphocytes from PBPC samples in a continuous flow format, with preserved functional capacity of both target and nontarget cells. These results open up for simultaneous affinity-bead-mediated separation of multiple cell populations, something which is not possible with current standard magnetic cell separation technology. © 2014 International Society for Advancement of Cytometry.


Assuntos
Linfócitos T CD4-Positivos/citologia , Técnicas de Visualização da Superfície Celular/métodos , Citometria de Fluxo/métodos , Técnicas Analíticas Microfluídicas/métodos , Proliferação de Células , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Humanos , Separação Imunomagnética/métodos , Nanopartículas de Magnetita , Transplante de Células-Tronco de Sangue Periférico
7.
PLoS One ; 8(5): e64233, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23724038

RESUMO

BACKGROUND: The use of acoustic forces to manipulate particles or cells at the microfluidic scale (i.e. acoustophoresis), enables non-contact, label-free separation based on intrinsic cell properties such as size, density and compressibility. Acoustophoresis holds great promise as a cell separation technique in several research and clinical areas. However, it has been suggested that the force acting upon cells undergoing acoustophoresis may impact cell viability, proliferation or cell function via subtle phenotypic changes. If this were the case, it would suggest that the acoustophoresis method would be a less useful tool for many cell analysis applications as well as for cell therapy. METHODS: We investigate, for the first time, several key aspects of cellular changes following acoustophoretic processing. We used two settings of ultrasonic actuation, one that is used for cell sorting (10 Vpp operating voltage) and one that is close to the maximum of what the system can generate (20 Vpp). We used microglial cells and assessed cell viability and proliferation, as well as the inflammatory response that is indicative of more subtle changes in cellular phenotype. Furthermore, we adapted a similar methodology to monitor the response of human prostate cancer cells to acoustophoretic processing. Lastly, we analyzed the respiratory properties of human leukocytes and thrombocytes to explore if acoustophoretic processing has adverse effects. RESULTS: BV2 microglia were unaltered after acoustophoretic processing as measured by apoptosis and cell turnover assays as well as inflammatory cytokine response up to 48 h following acoustophoresis. Similarly, we found that acoustophoretic processing neither affected the cell viability of prostate cancer cells nor altered their prostate-specific antigen secretion following androgen receptor activation. Finally, human thrombocytes and leukocytes displayed unaltered mitochondrial respiratory function and integrity after acoustophoretic processing. CONCLUSION: We conclude that microchannel acoustophoresis can be used for effective continuous flow-based cell separation without affecting cell viability, proliferation, mitochondrial respiration or inflammatory status.


Assuntos
Leucócitos/metabolismo , Técnicas Analíticas Microfluídicas , Microglia/metabolismo , Neoplasias/metabolismo , Células Sanguíneas/metabolismo , Linhagem Celular , Sobrevivência Celular , Humanos , Técnicas Analíticas Microfluídicas/instrumentação , Técnicas Analíticas Microfluídicas/métodos , Mitocôndrias/metabolismo , Ultrassom
8.
PLoS One ; 6(8): e23074, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21857996

RESUMO

BACKGROUND: Excessive collection of platelets is an unwanted side effect in current centrifugation-based peripheral blood progenitor cell (PBPC) apheresis. We investigated a novel microchip-based acoustophoresis technique, utilizing ultrasonic standing wave forces for the removal of platelets from PBPC products. By applying an acoustic standing wave field onto a continuously flowing cell suspension in a micro channel, cells can be separated from the surrounding media depending on their physical properties. STUDY DESIGN AND METHODS: PBPC samples were obtained from patients (n = 15) and healthy donors (n = 6) and sorted on an acoustophoresis-chip. The acoustic force was set to separate leukocytes from platelets into a target fraction and a waste fraction, respectively. The PBPC samples, the target and the waste fractions were analysed for cell recovery, purity and functionality. RESULTS: The median separation efficiency of leukocytes to the target fraction was 98% whereas platelets were effectively depleted by 89%. PBPC samples and corresponding target fractions were similar in the percentage of CD34+ hematopoetic progenitor/stem cells as well as leukocyte/lymphocyte subset distributions. Median viability was 98%, 98% and 97% in the PBPC samples, the target and the waste fractions, respectively. Results from hematopoietic progenitor cell assays indicated a preserved colony-forming ability post-sorting. Evaluation of platelet activation by P-selectin (CD62P) expression revealed a significant increase of CD62P+ platelets in the target (19%) and waste fractions (20%), respectively, compared to the PBPC input samples (9%). However, activation was lower when compared to stored blood bank platelet concentrates (48%). CONCLUSION: Acoustophoresis can be utilized to efficiently deplete PBPC samples of platelets, whilst preserving the target stem/progenitor cell and leukocyte cell populations, cell viability and progenitor cell colony-forming ability. Acoustophoresis is, thus, an interesting technology to improve current cell processing methods.


Assuntos
Plaquetas/citologia , Células-Tronco Hematopoéticas/citologia , Leucaférese/instrumentação , Leucaférese/métodos , Acústica/instrumentação , Plaquetas/metabolismo , Ensaio de Unidades Formadoras de Colônias , Citometria de Fluxo , Humanos , Leucócitos/citologia , Técnicas Analíticas Microfluídicas/instrumentação , Técnicas Analíticas Microfluídicas/métodos , Selectina-P/sangue , Ativação Plaquetária , Contagem de Plaquetas , Reprodutibilidade dos Testes
9.
Anal Chem ; 81(15): 6030-7, 2009 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-19594154

RESUMO

The generation of high quality plasma from whole blood is of major interest for many biomedical analyses and clinical diagnostic methods. However, it has proven to be a major challenge to make use of microfluidic separation devices to process fluids with high cell content, such as whole blood. Here, we report on an acoustophoresis based separation chip that prepares diagnostic plasma from whole blood linked to a clinical application. This acoustic separator has the capacity to sequentially remove enriched blood cells in multiple steps to yield high quality plasma of low cellular content. The generated plasma fulfills the standard requirements (<6.0 x 10(9) erythrocytes/L) recommended by the Council of Europe. Further, we successfully linked the plasmapheresis microchip to our previously developed porous silicon sandwich antibody microarray chip for prostate specific antigen (PSA) detection. PSA was detected by good linearity (R(2) > 0.99) in the generated plasma via fluorescence readout without any signal amplification at clinically relevant levels (0.19-21.8 ng/mL).


Assuntos
Análise em Microsséries , Técnicas Analíticas Microfluídicas/instrumentação , Plasmaferese/instrumentação , Antígeno Prostático Específico/sangue , Neoplasias da Próstata/sangue , Anticorpos Monoclonais/imunologia , Eritrócitos/metabolismo , Feminino , Humanos , Imunoensaio , Masculino , Técnicas Analíticas Microfluídicas/métodos , Plasmaferese/métodos , Neoplasias da Próstata/diagnóstico , Análise Serial de Proteínas , Silício/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA