Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Int J Mol Sci ; 24(6)2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36983075

RESUMO

Small extracellular vesicles (sEVs) derived from mesenchymal stem cells (MSCs) have attracted growing interest as a possible novel therapeutic agent for the management of different cardiovascular diseases (CVDs). Hypoxia significantly enhances the secretion of angiogenic mediators from MSCs as well as sEVs. The iron-chelating deferoxamine mesylate (DFO) is a stabilizer of hypoxia-inducible factor 1 and consequently used as a substitute for environmental hypoxia. The improved regenerative potential of DFO-treated MSCs has been attributed to the increased release of angiogenic factors, but whether this effect is also mediated by the secreted sEVs has not yet been investigated. In this study, we treated adipose-derived stem cells (ASCs) with a nontoxic dose of DFO to harvest sEVs (DFO-sEVs). Human umbilical vein endothelial cells (HUVECs) treated with DFO-sEVs underwent mRNA sequencing and miRNA profiling of sEV cargo (HUVEC-sEVs). The transcriptomes revealed the upregulation of mitochondrial genes linked to oxidative phosphorylation. Functional enrichment analysis on miRNAs of HUVEC-sEVs showed a connection with the signaling pathways of cell proliferation and angiogenesis. In conclusion, mesenchymal cells treated with DFO release sEVs that induce in the recipient endothelial cells molecular pathways and biological processes strongly linked to proliferation and angiogenesis.


Assuntos
Vesículas Extracelulares , Células-Tronco Mesenquimais , Humanos , Células Cultivadas , Desferroxamina/farmacologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Células-Tronco Mesenquimais/metabolismo , Quelantes de Ferro/farmacologia , Vesículas Extracelulares/metabolismo
2.
Int J Mol Sci ; 24(2)2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36675268

RESUMO

Several factors, such as ischemia, infection and skin injury impair the wound healing process. One common pathway in all these processes is related to the reactive oxygen species (ROS), whose production plays a vital role in wound healing. In this view, several strategies have been developed to stimulate the activation of the antioxidative system, thereby reducing the damage related to oxidative stress and improving wound healing. For this purpose, complex magnetic fields (CMFs) are used in this work on fibroblast and monocyte cultures derived from diabetic patients in order to evaluate their influence on the ROS production and related wound healing properties. Biocompatibility, cytotoxicity, mitochondrial ROS production and gene expression have been evaluated. The results confirm the complete biocompatibility of the treatment and the lack of side effects on cell physiology following the ISO standard indication. Moreover, the results confirm that the CMF treatment induced a reduction in the ROS production, an increase in the macrophage M2 anti-inflammatory phenotype through the activation of miRNA 5591, a reduction in inflammatory cytokines, such as interleukin-1 (IL-1) and IL-6, an increase in anti-inflammatory ones, such as IL-10 and IL-12 and an increase in the markers related to improved wound healing such as collagen type I and integrins. In conclusion, our findings encourage the use of CMFs for the treatment of diabetic foot.


Assuntos
Diabetes Mellitus , Campos Eletromagnéticos , Humanos , Espécies Reativas de Oxigênio/metabolismo , Inflamação , Anti-Inflamatórios , Biofísica
3.
Nat Commun ; 14(1): 132, 2023 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-36627352

RESUMO

As an inherited disorder characterized by severe pulmonary disease, cystic fibrosis could be considered a comorbidity for coronavirus disease 2019. Instead, current clinical evidence seems to be heading in the opposite direction. To clarify whether host factors expressed by the Cystic Fibrosis epithelia may influence coronavirus disease 2019 progression, here we describe the expression of SARS-CoV-2 receptors in primary airway epithelial cells. We show that angiotensin converting enzyme 2 (ACE2) expression and localization are regulated by Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) channel. Consistently, our results indicate that dysfunctional CFTR channels alter susceptibility to SARS-CoV-2 infection, resulting in reduced viral entry and replication in Cystic Fibrosis cells. Depending on the pattern of ACE2 expression, the SARS-CoV-2 spike (S) protein induced high levels of Interleukin 6 in healthy donor-derived primary airway epithelial cells, but a very weak response in primary Cystic Fibrosis cells. Collectively, these data support that Cystic Fibrosis condition may be at least partially protecting from SARS-CoV-2 infection.


Assuntos
Enzima de Conversão de Angiotensina 2 , COVID-19 , Fibrose Cística , SARS-CoV-2 , Internalização do Vírus , Humanos , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/metabolismo , Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Regulação para Baixo , Receptores Virais/genética , Receptores Virais/metabolismo , SARS-CoV-2/fisiologia , Glicoproteína da Espícula de Coronavírus/metabolismo , Replicação Viral
4.
Rev Physiol Biochem Pharmacol ; 185: 153-193, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-32789789

RESUMO

Endoplasmic reticulum (ER)-mitochondria regions are specialized subdomains called also mitochondria-associated membranes (MAMs). MAMs allow regulation of lipid synthesis and represent hubs for ion and metabolite signaling. As these two organelles can module both the amplitude and the spatiotemporal patterns of calcium (Ca2+) signals, this particular interaction controls several Ca2+-dependent pathways well known for their contribution to tumorigenesis, such as metabolism, survival, sensitivity to cell death, and metastasis. Mitochondria-mediated apoptosis arises from mitochondrial Ca2+ overload, permeabilization of the mitochondrial outer membrane, and the release of mitochondrial apoptotic factors into the cytosol. Decreases in Ca2+ signaling at the ER-mitochondria interface are being studied in depth as failure of apoptotic-dependent cell death is one of the predominant characteristics of cancer cells. However, some recent papers that linked MAMs Ca2+ crosstalk-related upregulation to tumor onset and progression have aroused the interest of the scientific community.In this review, we will describe how different MAMs-localized proteins modulate the effectiveness of Ca2+-dependent apoptotic stimuli by causing both increases and decreases in the ER-mitochondria interplay and, specifically, by modulating Ca2+ signaling.


Assuntos
Sinalização do Cálcio , Neoplasias , Humanos , Sinalização do Cálcio/fisiologia , Mitocôndrias , Membranas Mitocondriais/metabolismo , Membranas Mitocondriais/patologia , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/patologia , Morte Celular , Proteínas de Membrana/metabolismo , Cálcio/metabolismo , Neoplasias/metabolismo
5.
Int J Mol Sci ; 23(7)2022 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-35408912

RESUMO

Early post-transplant is the critical phase for the success of hematopoietic stem cell transplantation (HSCT). New viral infections and the reactivations associated with complete ablation of the recipient's T-cell immunity and inefficient reconstitution of the donor-derived system represent the main risks of HSCT. To date, the pharmacological treatments for post-HSCT viral infection-related complications have many limitations. Adoptive cell therapy (ACT) represents a new pharmacological strategy, allowing us to reconstitute the immune response to infectious agents in the post-HSC period. To demonstrate the potential advantage of this novel immunotherapy strategy, we report three cases of pediatric patients and the respective central nervous system complications after donor lymphocyte infusion.


Assuntos
Doenças Transmissíveis , Transplante de Células-Tronco Hematopoéticas , Neoplasias , Viroses , Terapia Baseada em Transplante de Células e Tecidos/efeitos adversos , Criança , Doenças Transmissíveis/etiologia , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Humanos , Imunoterapia/efeitos adversos , Imunoterapia Adotiva/efeitos adversos , Linfócitos , Neoplasias/etiologia , Viroses/etiologia , Viroses/terapia
6.
Biochim Biophys Acta Mol Cell Res ; 1868(8): 119061, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33991539

RESUMO

Calcium ions (Ca2+) and the complex regulatory system governed by Ca2+ signaling have been described to be of crucial importance in numerous aspects related to cell life and death decisions, especially in recent years. The growing attention given to this second messenger is justified by the pleiotropic nature of Ca2+-binding proteins and transporters and their consequent involvement in cell fate decisions. A growing number of works highlight that deregulation of Ca2+ signaling and homoeostasis is often deleterious and drives pathological conditions; in particular, a disruption of the main Ca2+-mediated death mechanisms may lead to uncontrolled cell growth that results in cancer. In this work, we review the latest useful evidence to better understand the complex network of pathways by which Ca2+ regulates cell life and death decisions.


Assuntos
Cálcio/metabolismo , Neoplasias/metabolismo , Animais , Sinalização do Cálcio , Morte Celular , Humanos , Neoplasias/patologia
7.
Biomedicines ; 9(2)2021 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-33672477

RESUMO

A decline in mitochondrial redox homeostasis has been associated with the development of a wide range of inflammatory-related diseases. Continue discoveries demonstrate that mitochondria are pivotal elements to trigger inflammation and stimulate innate immune signaling cascades to intensify the inflammatory response at front of different stimuli. Here, we review the evidence that an exacerbation in the levels of mitochondrial-derived reactive oxygen species (ROS) contribute to mito-inflammation, a new concept that identifies the compartmentalization of the inflammatory process, in which the mitochondrion acts as central regulator, checkpoint, and arbitrator. In particular, we discuss how ROS contribute to specific aspects of mito-inflammation in different inflammatory-related diseases, such as neurodegenerative disorders, cancer, pulmonary diseases, diabetes, and cardiovascular diseases. Taken together, these observations indicate that mitochondrial ROS influence and regulate a number of key aspects of mito-inflammation and that strategies directed to reduce or neutralize mitochondrial ROS levels might have broad beneficial effects on inflammatory-related diseases.

8.
Nucleic Acids Res ; 41(5): 3201-16, 2013 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-23376935

RESUMO

Little is known regarding the post-transcriptional networks that control gene expression in eukaryotes. Additionally, we still need to understand how these networks evolve, and the relative role played in them by their sequence-dependent regulatory factors, non-coding RNAs (ncRNAs) and RNA-binding proteins (RBPs). Here, we used an approach that relied on both phylogenetic sequence sharing and conservation in the whole mapped 3'-untranslated regions (3'-UTRs) of vertebrate species to gain knowledge on core post-transcriptional networks. The identified human hyper conserved elements (HCEs) were predicted to be preferred binding sites for RBPs and not for ncRNAs, namely microRNAs and long ncRNAs. We found that the HCE map identified a well-known network that post-transcriptionally regulates histone mRNAs. We were then able to discover and experimentally confirm a translational network composed of RNA Recognition Motif (RRM)-type RBP mRNAs that are positively controlled by HuR, another RRM-type RBP. HuR shows a preference for these RBP mRNAs bound in stem-loop motifs, confirming its role as a 'regulator of regulators'. Analysis of the transcriptome-wide HCE distribution revealed a profile of prevalently small clusters separated by unconserved intercluster RNA stretches, which predicts the formation of discrete small ribonucleoprotein complexes in the 3'-UTRs.


Assuntos
Regiões 3' não Traduzidas , Proteínas ELAV/fisiologia , RNA Mensageiro/genética , Proteínas de Ligação a RNA/genética , Animais , Sequência de Bases , Sítios de Ligação , Sequência Conservada , Proteínas ELAV/genética , Proteínas ELAV/metabolismo , Histonas/genética , Humanos , Sequências Repetidas Invertidas , Células MCF-7 , Biossíntese de Proteínas , Alinhamento de Sequência , Vertebrados
9.
Cell Cycle ; 11(5): 1040-8, 2012 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-22333579

RESUMO

The atypical protein kinase C (PKC) isoform zeta (PKCζ) has been implicated in the intracellular transduction of mitogenic and apoptotic signals by acting on different signaling pathways. The key role of these processes in tumorigenesis suggests a possible involvement of PKCζ in this event. PKCζ is activated by cytotoxic treatments, inhibits apoptotic cell death and reduces the sensitivity of cancer cells to chemotherapeutic agents. Here, using pharmacological and DNA recombinant approaches, we show that oxidative stress triggers nuclear translocation of PKCζ and induces resistance to apoptotic agents. Accordingly, chemoresistant cells show accumulation of PKCζ within the nucleus, and a nuclear-targeted PKCζ transfected in tumor cells decreases sensitivity to apoptosis. We thus developed a novel recombinant protein capable of selectively inhibiting the nuclear fraction of PKCζ that restored the susceptibility to apoptosis in cells in which PKCζ was enriched in the nuclear fraction, including chemoresistant cells. These findings establish the importance of PKCζ as a possible target to increase the effectiveness of anticancer therapies and highlight potential sites of intervention.


Assuntos
Antineoplásicos/toxicidade , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Proteína Quinase C/antagonistas & inibidores , Apoptose/efeitos dos fármacos , Doxorrubicina/toxicidade , Células HeLa , Humanos , Peróxido de Hidrogênio/toxicidade , Estresse Oxidativo , Proteína Quinase C/genética , Proteína Quinase C/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transfecção
10.
Curr Pharm Biotechnol ; 10(8): 767-71, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19912106

RESUMO

INTRODUCTION: a current problem with the Human papillomavirus (HPV) genital infection is to detect HPV presence and activity in high risk women. MATERIAL AND METHODS: 190 women at risk for HPV-infection underwent a Pap Test as well as a cervico-vaginal mucus sample analysis. The genome amplification of ORF L1 was by REAL-Time PCR by direct sequencing in capillary elettrophoresis of amplified product in Real Time (by ABI PRISM((R)) 310 Genetic Analyzer, Applied Biosystem, USA), followed by HPV genotyping using oligonucleotide probe hybridization. Degenerate primers My09/11, with 450 bp product amplified were utilized in Real Time and in Direct Sequencing. Furthermore, samples were evaluated by mRNA-HPV test to detect the presence of E6 and E7 transcripts. The results were compared with cytology. RESULTS: a total of 62 women were positive for HPV infection (32.6%) and 19 of these had one or more high-risk HPVs (30.6%); the concordance between the two assays was 78.9%, with 21.1% of totally or partially discordant results. Cytological results showed mRNA presence in 4 low grade and 2 high grade squamous intraepithelial lesions. CONCLUSION: the results suggest the potential of E6/E7 detection to target the presence of a transforming HPV infection.


Assuntos
Papillomaviridae/isolamento & purificação , Infecções por Papillomavirus/virologia , Lesões Pré-Cancerosas/virologia , RNA Mensageiro/genética , RNA Viral/genética , Displasia do Colo do Útero/virologia , Neoplasias do Colo do Útero/virologia , Adulto , Estudos de Coortes , Sondas de DNA de HPV , Feminino , Humanos , Hibridização de Ácido Nucleico , Papillomaviridae/genética , Infecções por Papillomavirus/epidemiologia , Infecções por Papillomavirus/patologia , Lesões Pré-Cancerosas/epidemiologia , Lesões Pré-Cancerosas/patologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Neoplasias do Colo do Útero/epidemiologia , Neoplasias do Colo do Útero/patologia , Esfregaço Vaginal , Displasia do Colo do Útero/epidemiologia , Displasia do Colo do Útero/patologia
11.
Biochim Biophys Acta ; 1787(11): 1342-51, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19341702

RESUMO

The heterogenous subcellular distribution of a wide array of channels, pumps and exchangers allows extracellular stimuli to induce increases in cytoplasmic Ca(2+) concentration ([Ca(2+)]c) with highly defined spatial and temporal patterns, that in turn induce specific cellular responses (e.g. contraction, secretion, proliferation or cell death). In this extreme complexity, the role of mitochondria was considered marginal, till the direct measurement with targeted indicators allowed to appreciate that rapid and large increases of the [Ca(2+)] in the mitochondrial matrix ([Ca(2+)]m) invariably follow the cytosolic rises. Given the low affinity of the mitochondrial Ca(2+) transporters, the close proximity to the endoplasmic reticulum (ER) Ca(2+)-releasing channels was shown to be responsible for the prompt responsiveness of mitochondria. In this review, we will summarize the current knowledge of: i) the mitochondrial and ER Ca(2+) channels mediating the ion transfer, ii) the structural and molecular foundations of the signaling contacts between the two organelles, iii) the functional consequences of the [Ca(2+)]m increases, and iv) the effects of oncogene-mediated signals on mitochondrial Ca(2+) homeostasis. Despite the rapid progress carried out in the latest years, a deeper molecular understanding is still needed to unlock the secrets of Ca(2+) signaling machinery.


Assuntos
Cálcio/metabolismo , Retículo Endoplasmático/metabolismo , Mitocôndrias/metabolismo , Trifosfato de Adenosina/biossíntese , Animais , Canais de Cálcio/fisiologia , Sinalização do Cálcio , Humanos , Receptores de Inositol 1,4,5-Trifosfato/fisiologia , Proteínas Proto-Oncogênicas c-akt/fisiologia , Proteínas Proto-Oncogênicas c-bcl-2/fisiologia , Canal de Ânion 2 Dependente de Voltagem/fisiologia
12.
J Pediatr Nurs ; 23(1): 28-36, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18207045

RESUMO

We examined concurrent validity of scores for two infant motor screening tools, the Harris Infant Neuromotor Test (HINT) and the Alberta Infant Motor Scale, in 121 Canadian infants. Relationships between the two tests for the overall sample were as follows: r = -.83 at 4 to 6.5 months (n = 121; p < .01) and r = -.85 at 10 to 12.5 months (n = 109; p < .01), suggesting that the HINT, the newer of the two measures, is valid in determining motor delays. Each test has advantages and disadvantages, and practitioners should determine which one best meets their infant assessment needs.


Assuntos
Deficiências do Desenvolvimento/diagnóstico , Programas de Rastreamento/métodos , Transtornos das Habilidades Motoras/diagnóstico , Avaliação em Enfermagem/métodos , Estudos de Casos e Controles , Deficiências do Desenvolvimento/etiologia , Análise Discriminante , Diagnóstico Precoce , Feminino , Idade Gestacional , Humanos , Lactente , Estudos Longitudinais , Masculino , Programas de Rastreamento/normas , Transtornos das Habilidades Motoras/etiologia , Avaliação em Enfermagem/normas , Pesquisa em Avaliação de Enfermagem , Variações Dependentes do Observador , Seleção de Pacientes , Enfermagem Pediátrica , Valor Preditivo dos Testes , Psicometria , Medição de Risco , Fatores de Risco , Sensibilidade e Especificidade , Inquéritos e Questionários
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA