Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Brain Res ; 1817: 148475, 2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37400012

RESUMO

Damage to the axonal white matter tracts within the brain is a key cause of neurological impairment and long-term disability following traumatic brain injury (TBI). Understanding how axonal injury develops following TBI requires gyrencephalic models that undergo shear strain and tissue deformation similar to the clinical situation and investigation of the effects of post-injury insults like hypoxia. The aim of this study was to determine the effect of post-traumatic hypoxia on axonal injury and inflammation in a sheep model of TBI. Fourteen male Merino sheep were allocated to receive a single TBI via a modified humane captive bolt animal stunner, or sham surgery, followed by either a 15 min period of hypoxia or maintenance of normoxia. Head kinematics were measured in injured animals. Brains were assessed for axonal damage, microglia and astrocyte accumulation and inflammatory cytokine expression at 4 hrs following injury. Early axonal injury was characterised by calpain activation, with significantly increased SNTF immunoreactivity, a proteolytic fragment of alpha-II spectrin, but not with impaired axonal transport, as measured by amyloid precursor protein (APP) immunoreactivity. Early axonal injury was associated with an increase in GFAP levels within the CSF, but not with increases in IBA1 or GFAP+ve cells, nor in levels of TNFα, IL1ß or IL6 within the cerebrospinal fluid or white matter. No additive effect of post-injury hypoxia was noted on axonal injury or inflammation. This study provides further support that axonal injury post-TBI is driven by different pathophysiological mechanisms, and detection requires specific markers targeting multiple injury mechanisms. Treatment may also need to be tailored for injury severity and timing post-injury to target the correct injury pathway.


Assuntos
Lesões Encefálicas Traumáticas , Lesões Encefálicas , Masculino , Animais , Ovinos , Lesões Encefálicas/metabolismo , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/metabolismo , Encéfalo/metabolismo , Hipóxia/metabolismo , Inflamação/metabolismo
2.
Sci Rep ; 13(1): 7431, 2023 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-37156856

RESUMO

Delirium is an acute confusional state and a common postoperative morbidity. Prevalent in older adults, delirium occurs at other ages but it is unclear whether the pathophysiology and biomarkers for the condition are independent of age. We quantified expression of 273 plasma proteins involved in inflammation and cardiovascular or neurologic conditions in 34 middle-aged and 42 older patients before and one day after elective spine surgery. Delirium was identified by the 3D-CAM and comprehensive chart review. Protein expression was measure by Proximity Extension Assay and results were analyzed by logistic regression, gene set enrichment, and protein-protein interactions. Twenty-two patients developed delirium postoperatively (14 older; 8 middle-aged) and 89 proteins in pre- or 1-day postoperative plasma were associated with delirium. A few proteins (IL-8, LTBR, TNF-R2 postoperatively; IL-8, IL-6, LIF, ASGR1 by pre- to postoperative change) and 12 networks were common to delirium in both age groups. However, there were marked differences in the delirium proteome by age; older patients had many more delirium-associated proteins and pathways than middle-aged subjects even though both had the same clinical syndrome. Therefore, there are age-dependent similarities and differences in the plasma proteomic signature of postoperative delirium, which may signify age differences in pathogenesis of the syndrome.


Assuntos
Delírio , Delírio do Despertar , Pessoa de Meia-Idade , Humanos , Idoso , Proteômica , Interleucina-8 , Complicações Pós-Operatórias , Delírio/etiologia , Receptor de Asialoglicoproteína
3.
Fluids Barriers CNS ; 20(1): 5, 2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36653870

RESUMO

BACKGROUND: Detecting changes in pulsatile cerebrospinal fluid (CSF) flow may assist clinical management decisions, but spinal CSF flow is relatively understudied. Traumatic spinal cord injuries (SCI) often cause spinal cord swelling and subarachnoid space (SAS) obstruction, potentially causing pulsatile CSF flow changes. Pigs are emerging as a favoured large animal SCI model; therefore, the aim of this study was to characterise CSF flow along the healthy pig spine. METHODS: Phase-contrast magnetic resonance images (PC-MRI), retrospectively cardiac gated, were acquired for fourteen laterally recumbent, anaesthetised and ventilated, female domestic pigs (22-29 kg). Axial images were obtained at C2/C3, T8/T9, T11/T12 and L1/L2. Dorsal and ventral SAS regions of interest (ROI) were manually segmented. CSF flow and velocity were determined throughout a cardiac cycle. Linear mixed-effects models, with post-hoc comparisons, were used to identify differences in peak systolic/diastolic flow, and maximum velocity (cranial/caudal), across spinal levels and dorsal/ventral SAS. Velocity wave speed from C2/C3 to L1/L2 was calculated. RESULTS: PC-MRI data were obtained for 11/14 animals. Pulsatile CSF flow was observed at all spinal levels. Peak systolic flow was greater at C2/C3 (dorsal: - 0.32 ± 0.14 mL/s, ventral: - 0.15 ± 0.13 mL/s) than T8/T9 dorsally (- 0.04 ± 0.03 mL/s; p < 0.001), but not different ventrally (- 0.08 ± 0.08 mL/s; p = 0.275), and no difference between thoracolumbar levels (p > 0.05). Peak diastolic flow was greater at C2/C3 (0.29 ± 0.08 mL/s) compared to T8/T9 (0.03 ± 0.03 mL/s, p < 0.001) dorsally, but not different ventrally (p = 1.000). Cranial and caudal maximum velocity at C2/C3 were greater than thoracolumbar levels dorsally (p < 0.001), and T8/T9 and L1/L2 ventrally (p = 0.022). Diastolic velocity wave speed was 1.41 ± 0.39 m/s dorsally and 1.22 ± 0.21 m/s ventrally, and systolic velocity wave speed was 1.02 ± 0.25 m/s dorsally and 0.91 ± 0.22 m/s ventrally. CONCLUSIONS: In anaesthetised and ventilated domestic pigs, spinal CSF has lower pulsatile flow and slower velocity wave propagation, compared to humans. This study provides baseline CSF flow at spinal levels relevant for future SCI research in this animal model.


Assuntos
Pressão do Líquido Cefalorraquidiano , Imageamento por Ressonância Magnética , Humanos , Feminino , Suínos , Animais , Estudos Retrospectivos , Imageamento por Ressonância Magnética/métodos , Medula Espinal/diagnóstico por imagem , Sus scrofa , Líquido Cefalorraquidiano/diagnóstico por imagem
4.
Reprod Domest Anim ; 54(12): 1543-1551, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31520443

RESUMO

Protein profile of the placenta expresses its function and maintenance. Any alterations can be reflected in qualitative and quantitative changes in this profile. The aim of the present study was the evaluation of protein profile in the placenta of mares suffering from the retention of foetal membranes (FMR) by two separation methods and the comparison with physiologically released tissues. Placentas from 14 healthy, heavy draft mares were collected immediately after the expulsion of newborn. Tissues after homogenization and staining with fluorescent dyes were subjected to electrophoretic as well as chromatographic separation. Electrophoretic gels were statistically analysed for the presence and abundance of examined proteins, while some proteins were identified in chromatographic fractions. Out of 248 spots detected in endometrium, 38 differed significantly between FMR and control animals, while in allantochorion, respective values reached 241 and 27 spots (p < .05). Among identified proteins that expressed higher abundance in endometrium of FMR mares than control animals were prostaglandin reductase, dehydrogenase/reductase SDR family, and placental growth factor. These proteins are involved in regulation of parturition. Additionally, the following proteins responsible for physiological activity of a cell-guanine methyl transferase, aspartyl/asparaginyl beta-hydroxylase and GTP-binding protein, were identified. These proteins expressed higher abundance in allantochorion of FMR mares than in controls. This preliminary study confirmed the disturbances in protein pattern between foetal membranes in FMR and healthy mares. Further qualitative and quantitative experiments are necessary to deepen our knowledge on the mechanisms of the retention of foetal membranes in mares.


Assuntos
Membranas Extraembrionárias/metabolismo , Cavalos , Placenta Retida/metabolismo , Proteínas/metabolismo , Animais , Endométrio/metabolismo , Feminino , Placenta/patologia , Placenta Retida/veterinária , Gravidez , Proteoma/metabolismo
5.
Front Neurosci ; 13: 587, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31338013

RESUMO

BACKGROUND AND PURPOSE: Cerebral edema and elevated intracranial pressure (ICP) are the leading cause of death in the first week following stroke. Despite this, current treatments are limited and fail to address the underlying mechanisms of swelling, highlighting the need for targeted treatments. When screening promising novel agents, it is essential to use clinically relevant large animal models to increase the likelihood of successful clinical translation. As such, we sought to develop a survival model of transient middle cerebral artery occlusion (tMCAO) in the sheep and subsequently characterize the temporal profile of cerebral edema and elevated ICP following stroke in this novel, clinically relevant model. METHODS: Merino-sheep (27M;31F) were anesthetized and subject to 2 h tMCAO with reperfusion or sham surgery. Following surgery, animals were allowed to recover and returned to their home pens. At preselected times points ranging from 1 to 7 days post-stroke, animals were re-anesthetized, ICP measured for 4 h, followed by imaging with MRI to determine cerebral edema, midline shift and infarct volume (FLAIR, T2 and DWI). Animals were subsequently euthanized and their brain removed for immunohistochemical analysis. Serum and cerebrospinal fluid samples were also collected and analyzed for substance P (SP) using ELISA. RESULTS: Intracranial pressure and MRI scans were normal in sham animals. Following stroke, ICP rose gradually over time and by 5 days was significantly (p < 0.0001) elevated above sham levels. Profound cerebral edema was observed as early as 2 days post-stroke and continued to evolve out to 6 days, resulting in significant midline shift which was most prominent at 5 days post-stroke (p < 0.01), in keeping with increasing ICP. Serum SP levels were significantly elevated (p < 0.01) by 7 days post-tMCAO. CONCLUSION: We have successfully developed a survival model of ovine tMCAO and characterized the temporal profile of ICP. Peak ICP elevation, cerebral edema and midline shift occurred at days 5-6 following stroke, accompanied by an elevation in serum SP. Our findings suggest that novel therapeutic agents screened in this model targeting cerebral edema and elevated ICP would most likely be effective when administered prior to 5 days, or as early as possible following stroke onset.

6.
Front Neurosci ; 13: 681, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31333402

RESUMO

Background and Purpose: The morbidity and early mortality associated with stroke is largely attributable to cerebral edema and elevated intracranial pressure (ICP). Existing pharmacotherapies do not target the underlying pathophysiology and are often ineffective in sustainably lowering ICP, whilst decompressive craniectomy (DC) surgery is life-saving yet with surgical/peri-operative risk and increased morbidity in the elderly. Accordingly, there is an urgent need for therapies that directly target the mechanisms of edema genesis. Neurogenic inflammation, mediated by substance P (SP) binding to the tachykinin NK1 receptor (NK1-r), is associated with blood-brain barrier (BBB) disruption, cerebral edema and poor outcome post-stroke. NK1-r antagonist treatment ameliorates BBB dysfunction and cerebral edema in rodent stroke models. However, treatment has not been investigated in a large animal model, an important step toward clinical translation. Consequently, the current study compared the efficacy of NK1-r antagonist treatment to DC surgery in reducing ICP post-stroke in a clinically relevant ovine model. Methods: Anesthetized female Merino sheep (65 ± 6 kg, 18-24 months) underwent sham surgery (n = 4) or permanent middle cerebral artery occlusion (n = 22). Stroke animals were randomized into one of 5 treatments: 1×NK1 bolus (4 h), 2×NK1 bolus (4 h;9 h), 3×NK1 bolus (4 h;9 h;14 h), DC surgery (performed at 4 h) or saline vehicle. ICP, blood pressure and blood gasses were monitored for 24 h post-stroke. At 24 h post-stroke anesthetized animals underwent MRI followed by perfusion and brains removed and processed for histological assessment. Results: 2×NK1, 3×NK1 administration or DC surgery significantly (p < 0.05) reduced ICP compared to vehicle. 1×NK1 was ineffective in sustainably lowering ICP. On MRI, midline shift and cerebral edema were more marked in vehicles compared to NK1-r treatment groups. Conclusion: Two or three boluses of NK1-r antagonist treatment reduced ICP comparable to DC surgery, suggesting it may provide a novel alternative to invasive surgery for the management of elevated ICP.

7.
Neurosci Lett ; 648: 1-7, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28323088

RESUMO

Spinal cord injury (SCI) researchers have predominately utilized rodents for SCI modeling and experimentation. Unfortunately, a large number of novel therapies developed in rodent models have failed to demonstrate efficacy in human clinical trials which suggests that improved animal models are an important translational tool. Recently, porcine models of SCI have been identified as a valuable intermediary model for preclinical evaluation of promising therapies to aid clinical translation. However, the localization of the major spinal tracts in pigs has not yet been described. Given that significant differences exist in the location of the corticospinal tract (CST) between rodents and humans, determining its location in pigs will provide important information related to the translational potential of the porcine pre-clinical model of SCI. Thus, the goal of this study is to investigate the localization of the CST within the porcine spinal cord. Mature female domestic pigs (n=4, 60kg) received microinjections of fluorescent dextran tracers (Alexa Fluor, 10,000MW) into the primary motor cortex, using image-guided navigation (StealthStation®), to label the CST. At 5 weeks post-tracer injection animals were euthanized, the entire neuroaxis harvested and processed for histological examination. Serial sections of the brain and spinal cord were prepared and imaged using confocal microscopy to observe the location of the CST in pigs. Results demonstrate that the CST of pigs is located in the lateral white matter, signifying greater similarity to human anatomical structure compared to that of rodents. We conclude that the corticospinal tract in pigs demonstrates anatomical similarity to human, suggesting that the porcine model has importance as a translational intermediary pre-clinical model.


Assuntos
Modelos Animais de Doenças , Córtex Motor/anatomia & histologia , Tratos Piramidais/anatomia & histologia , Traumatismos da Medula Espinal/patologia , Suínos/anatomia & histologia , Animais , Feminino , Imageamento por Ressonância Magnética , Técnicas de Rastreamento Neuroanatômico , Especificidade da Espécie , Substância Branca/patologia
8.
Spine (Phila Pa 1976) ; 40(8): E450-7, 2015 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-25868101

RESUMO

STUDY DESIGN: Immunohistochemical assessment of apoptotic markers in human cases of compressive myelopathy due to neoplastic compression. OBJECTIVE: To characterize the role of apoptosis in neoplastic compressive myelopathy in human postmortem tissue with extramedullary tumor involvement. SUMMARY OF BACKGROUND DATA: Neoplasms, whether primary or metastatic, may lead to compression of the spinal cord and development of a compressive myelopathy syndrome. Apoptotic processes of cell death are thought to contribute to cell death in chronic compressive myelopathy because of degenerative spondylosis, but this has not previously been described in neoplastic compression. METHODS: Six postmortem cases of human neoplastic compressive myelopathy were assessed for apoptosis using a panel of immunohistochemical markers including Fas, B-cell lymphoma 2 (Bcl-2), caspase-3 and 9, DNA-dependent protein kinase catalytic subunit (DNA-PKcs), poly (ADP-ribose) polymerase (PARP), apoptosis-inducing factor (AIF), and terminal deoxynucleotide transferase dUTP Nick End Labeling (TUNEL). RESULTS: Apoptosis was maximal at the site of tumor compression. Glial cells, predominantly oligodendrocytes, were immunopositive for DNA-PKcs, PARP, AIF, and TUNEL. Axons were immunopositive for caspase 3, DNA-PKcs, and AIF. Neurons were immunopositive for DNA-PKcs, PARP, AIF, and TUNEL. CONCLUSION: The current study demonstrates that apoptosis plays a role in human neoplastic compressive myelopathy. Necrosis dominates the severe end of the spectrum of compression. The prominent oligodendroglial involvement is suggestive that apoptosis may be important in the ongoing remodeling of white matter due to sustained compression. LEVEL OF EVIDENCE: 4.


Assuntos
Apoptose , Axônios/química , Neoplasias/complicações , Oligodendroglia/química , Compressão da Medula Espinal/etiologia , Idoso , Fator de Indução de Apoptose/análise , Caspase 3/análise , Caspase 9/análise , Proteína Quinase Ativada por DNA/análise , Feminino , Humanos , Imuno-Histoquímica , Marcação In Situ das Extremidades Cortadas , Masculino , Pessoa de Meia-Idade , Metástase Neoplásica , Proteínas Nucleares/análise , Poli(ADP-Ribose) Polimerases/análise , Proteínas Proto-Oncogênicas c-bcl-2/análise , Compressão da Medula Espinal/patologia , Adulto Jovem , Receptor fas/análise
9.
PLoS One ; 9(8): e104565, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25105800

RESUMO

Red/near-infrared irradiation therapy (R/NIR-IT) delivered by laser or light-emitting diode (LED) has improved functional outcomes in a range of CNS injuries. However, translation of R/NIR-IT to the clinic for treatment of neurotrauma has been hampered by lack of comparative information regarding the degree of penetration of the delivered irradiation to the injury site and the optimal treatment parameters for different CNS injuries. We compared the treatment efficacy of R/NIR-IT at 670 nm and 830 nm, provided by narrow-band LED arrays adjusted to produce equal irradiance, in four in vivo rat models of CNS injury: partial optic nerve transection, light-induced retinal degeneration, traumatic brain injury (TBI) and spinal cord injury (SCI). The number of photons of 670 nm or 830 nm light reaching the SCI injury site was 6.6% and 11.3% of emitted light respectively. Treatment of rats with 670 nm R/NIR-IT following partial optic nerve transection significantly increased the number of visual responses at 7 days after injury (P ≤ 0.05); 830 nm R/NIR-IT was partially effective. 670 nm R/NIR-IT also significantly reduced reactive species and both 670 nm and 830 nm R/NIR-IT reduced hydroxynonenal immunoreactivity (P ≤ 0.05) in this model. Pre-treatment of light-induced retinal degeneration with 670 nm R/NIR-IT significantly reduced the number of Tunel+ cells and 8-hydroxyguanosine immunoreactivity (P ≤ 0.05); outcomes in 830 nm R/NIR-IT treated animals were not significantly different to controls. Treatment of fluid-percussion TBI with 670 nm or 830 nm R/NIR-IT did not result in improvements in motor or sensory function or lesion size at 7 days (P>0.05). Similarly, treatment of contusive SCI with 670 nm or 830 nm R/NIR-IT did not result in significant improvements in functional recovery or reduced cyst size at 28 days (P>0.05). Outcomes from this comparative study indicate that it will be necessary to optimise delivery devices, wavelength, intensity and duration of R/NIR-IT individually for different CNS injury types.


Assuntos
Lesões Encefálicas/radioterapia , Traumatismos do Nervo Óptico/radioterapia , Degeneração Retiniana/radioterapia , Traumatismos da Medula Espinal/radioterapia , Animais , Encéfalo/patologia , Encéfalo/efeitos da radiação , Lesões Encefálicas/patologia , Feminino , Raios Infravermelhos , Masculino , Nervo Óptico/patologia , Nervo Óptico/efeitos da radiação , Traumatismos do Nervo Óptico/patologia , Ratos Sprague-Dawley , Retina/patologia , Retina/efeitos da radiação , Degeneração Retiniana/patologia , Medula Espinal/patologia , Medula Espinal/efeitos da radiação , Traumatismos da Medula Espinal/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA