Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Antioxidants (Basel) ; 12(3)2023 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-36978879

RESUMO

Considerable evidence indicates that cholesterol oxidation products, named oxysterols, play a key role in several events involved in Alzheimer's disease (AD) pathogenesis. Although the majority of oxysterols causes neuron dysfunction and degeneration, 24-hydroxycholesterol (24-OHC) has recently been thought to be neuroprotective also. The present study aimed at supporting this concept by exploring, in SK-N-BE neuroblastoma cells, whether 24-OHC affected the neuroprotective SIRT1/PGC1α/Nrf2 axis. We demonstrated that 24-OHC, through the up-regulation of the deacetylase SIRT1, was able to increase both PGC1α and Nrf2 expression and protein levels, as well as Nrf2 nuclear translocation. By acting on this neuroprotective pathway, 24-OHC favors tau protein clearance by triggering tau ubiquitination and subsequently its degradation through the ubiquitin-proteasome system. We also observed a modulation of SIRT1, PGC1α, and Nrf2 expression and synthesis in the brain of AD patients with the progression of the disease, suggesting their potential role in neuroprotection. These findings suggest that 24-OHC contributes to tau degradation through the up-regulation of the SIRT1/PGC1α/Nrf2 axis. Overall, the evidence points out the importance of avoiding 24-OHC loss, which can occur in the AD brain, and of limiting SIRT1, PGC1α, and Nrf2 deregulation in order to prevent the neurotoxic accumulation of hyperphosphorylated tau and counteract neurodegeneration.

2.
Free Radic Biol Med ; 181: 251-269, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35158030

RESUMO

Chronic inflammation represents a main event in the onset and progression of atherosclerosis and is closely associated with oxidative stress in a sort of vicious circle that amplifies and sustains all stages of the disease. Key players of atherosclerosis are monocytes/macrophages. According to their pro- or anti-inflammatory phenotype and biological functions, lesional macrophages can release various mediators and enzymes, which in turn contribute to plaque progression and destabilization or, alternatively, lead to its resolution. Among the factors connected to atherosclerotic disease, lipid species carried by low density lipoproteins and pro-oxidant stimuli strongly promote inflammatory events in the vasculature, also by modulating the macrophage phenotyping. Therapies specifically aimed to balance macrophage inflammatory state are increasingly considered as powerful tools to counteract plaque formation and destabilization. In this connection, several molecules of natural origin have been recognized to be active mediators of diverse metabolic and signaling pathways regulating lipid homeostasis, redox state, and inflammation; they are, thus, considered as promising candidates to modulate macrophage responsiveness to pro-atherogenic stimuli. The current knowledge of the capability of nutraceuticals to target macrophage polarization and to counteract atherosclerotic lesion progression, based mainly on in vitro investigation, is summarized in the present review.


Assuntos
Aterosclerose , Placa Aterosclerótica , Aterosclerose/metabolismo , Suplementos Nutricionais , Humanos , Inflamação/metabolismo , Ativação de Macrófagos , Macrófagos/metabolismo , Placa Aterosclerótica/metabolismo
3.
Redox Biol ; 39: 101837, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33360775

RESUMO

Among Alzheimer's disease (AD) brain hallmarks, the presence of reactive astrocytes was demonstrated to correlate with neuronal loss and cognitive deficits. Evidence indeed supports the role of reactive astrocytes as mediators of changes in neurons, including synapses. However, the complexity and the outcomes of astrocyte reactivity are far from being completely elucidated. Another key role in AD pathogenesis is played by alterations in brain cholesterol metabolism. Oxysterols (cholesterol oxidation products) are crucial for brain cholesterol homeostasis, and we previously demonstrated that changes in the brain levels of various oxysterols correlate with AD progression. Moreover, oxysterols have been shown to contribute to various pathological mechanisms involved in AD pathogenesis. In order to deepen the role of oxysterols in AD, we investigated whether they could contribute to astrocyte reactivity, and consequently impact on neuronal health. Results showed that oxysterols present in mild or severe AD brains induce a clear morphological change in mouse primary astrocytes, accompanied by the upregulation of some reactive astrocyte markers, including lipocalin-2 (Lcn2). Moreover, astrocyte conditioned media analysis revealed a significant increase in the release of Lcn2, cytokines, and chemokines in response to oxysterols. A significant reduction of postsynaptic density protein 95 (PSD95) and a concurrent increase in cleaved caspase-3 protein levels have been demonstrated in neurons co-cultured with oxysterol-treated astrocytes, pointing out that mediators released by astrocytes have an impact on neurons. Among these mediators, Lcn2 has been demonstrated to play a major role on synapses, affecting neurite morphology and decreasing dendritic spine density. These data demonstrated that oxysterols present in the AD brain promote astrocyte reactivity, determining the release of several mediators that affect neuronal health and synapses. Lcn2 has been shown to exert a key role in mediating the synaptotoxic effect of oxysterol-treated astrocytes.


Assuntos
Doença de Alzheimer , Oxisteróis , Animais , Astrócitos/metabolismo , Encéfalo/metabolismo , Lipocalina-2/metabolismo , Camundongos
4.
Free Radic Biol Med ; 129: 354-363, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30312760

RESUMO

Atherosclerosis is currently understood to be mainly the consequence of a complicated inflammatory process at the different stages of plaque development. Among the several inflammatory molecules involved, up-regulation of the functional cyclooxygenase 2/membrane-bound prostaglandin E synthase 1 (COX-2/mPGES-1) axis plays a key role in plaque development. Excessive production of oxidized lipids, following low-density lipoprotein (LDL) oxidation, is a characteristic feature of atherosclerosis. Among the oxidized lipids of LDLs, the oxysterol 27-hydroxycholesterol (27-OH) and the aldehyde 4-hydroxynonenal (HNE) substantially accumulate in the atherosclerotic plaque, contributing to its progression and instability through a variety of processes. This study shows that 27-OH and HNE promote up-regulation of both the inducible enzymes COX-2 and mPGES-1, leading to increased production of prostaglandin (PG) E2 and inducible nitric oxide synthase, and the subsequent release of nitric oxide in human promonocytic U937 cells. The study also examined the potential involvement of the functionally coupled COX-2/mPGES-1 in enhancing the production of certain pro-inflammatory cytokines and of matrix metalloproteinase 9 by U937 cells. This enhancement is presumably due to the induction of PGE2 synthesis, as a result of the up-regulation of the COX-2/mPGES-1, stimulated by the two oxidized lipids, 27-OH and HNE. Induction of PGE2 synthesis might thus be a mechanism of plaque instability and eventual rupture, contributing to matrix metalloproteinase production by activated macrophages.


Assuntos
Aldeídos/farmacologia , Ciclo-Oxigenase 2/genética , Hidroxicolesteróis/farmacologia , Monócitos/efeitos dos fármacos , Prostaglandina-E Sintases/genética , Linhagem Celular Tumoral , Ciclo-Oxigenase 2/metabolismo , Dinoprostona/metabolismo , Ativação Enzimática/efeitos dos fármacos , Regulação da Expressão Gênica , Humanos , Lipoproteínas LDL/metabolismo , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , Modelos Biológicos , Monócitos/metabolismo , Monócitos/patologia , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Oxirredução , Placa Aterosclerótica/genética , Placa Aterosclerótica/metabolismo , Placa Aterosclerótica/patologia , Prostaglandina-E Sintases/metabolismo , Transdução de Sinais
5.
Redox Biol ; 17: 423-431, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29883958

RESUMO

It is now established that cholesterol oxidation products (oxysterols) are involved in several events underlying Alzheimer's disease (AD) pathogenesis. Of note, certain oxysterols cause neuron dysfunction and degeneration but, recently, some of them have been shown also to have neuroprotective effects. The present study, which aimed to understand the potential effects of 24-hydroxycholesterol (24-OH) against the intraneuronal accumulation of hyperphosphorylated tau protein, stressed these latter effects. A beneficial effect of 24-OH was demonstrated in SK-N-BE neuroblastoma cells, and is due to its ability to modulate the deacetylase sirtuin 1 (SIRT1), which contributes to preventing the neurotoxic accumulation of the hyperphosphorylated tau protein. Unlike 24-OH, 7-ketocholesterol (7-K) did not modulate the SIRT1-dependent neuroprotective pathway. To confirm the neuroprotective role of 24-OH, in vivo experiments were run on mice that express human tau without spontaneously developing tau pathology (hTau mice), by means of the intracerebroventricular injection of 24-OH. 24-OH, unlike 7-K, was found to completely prevent the hyperphosphorylation of tau induced by amyloid ß monomers. These data highlight the importance of preventing the loss of 24-OH in the brain, and of maintaining high levels of the enzyme SIRT1, in order to counteract neurodegeneration.


Assuntos
Doença de Alzheimer/genética , Hidroxicolesteróis/metabolismo , Sirtuína 1/genética , Proteínas tau/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Doença de Alzheimer/prevenção & controle , Peptídeos beta-Amiloides/genética , Peptídeos beta-Amiloides/metabolismo , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Modelos Animais de Doenças , Humanos , Hidroxicolesteróis/administração & dosagem , Cetocolesteróis/administração & dosagem , Camundongos , Camundongos Transgênicos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Fármacos Neuroprotetores/metabolismo , Oxirredução , Proteínas tau/metabolismo
6.
Free Radic Biol Med ; 91: 93-104, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26689473

RESUMO

Cholesterol oxidation products such as oxysterols are considered critical factors in the atherosclerotic plaque formation since they induce oxidative stress, inflammation and apoptotic cell death. 27-hydroxycholesterol (27-OH) is one of the most represented oxysterols in atherosclerotic lesions. We recently showed that relatively low concentrations of 27-OH generated a strong survival signaling through an early and transient increase of cellular ROS level, that enhanced MEK-ERK/PI3K-Akt phosphorylation, in turn responsible of a sustained quenching of ROS production. It remains to identify the link between ERK/Akt up-regulation and the consequent quenching effect on ROS intracellular level that efficiently and markedly delay the pro-apoptotic effect of the oxysterol. Here we report on the potent activation of Nrf2 redox-sensitive transcription factor by low micromolar amount of 27-OH added to U937 promonocytic cells. The 27-OH-exerted induction of Nrf2 and subsequently of the target genes, HO-1 and NQO-1, was proved to be: (i) dependent upon the activation of ERK and Akt pathways, (ii) directly responsible for the quenching of intracellular oxidative stress and by this way (iii) ultimately responsible for the observed oxysterol-induced pro-survival response.


Assuntos
Hidroxicolesteróis/farmacologia , Células Precursoras de Monócitos e Macrófagos/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Transporte Ativo do Núcleo Celular , Apoptose , Linhagem Celular , Sobrevivência Celular , Indução Enzimática/efeitos dos fármacos , Heme Oxigenase-1/genética , Heme Oxigenase-1/metabolismo , Humanos , Sistema de Sinalização das MAP Quinases , Células Precursoras de Monócitos e Macrófagos/efeitos dos fármacos , NAD(P)H Desidrogenase (Quinona)/genética , NAD(P)H Desidrogenase (Quinona)/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio
7.
Food Funct ; 6(4): 1218-28, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25736858

RESUMO

Dietary oxysterols are cholesterol auto-oxidation products widely present in cholesterol-rich foods. They are thought to affect the intestinal barrier function, playing a role in gut inflammation. This study has characterized specific cell signals that are up-regulated in differentiated CaCo-2 colonic epithelial cells by a mixture of oxysterols representative of a hyper-cholesterolemic diet. p38 MAPK activation plays a major role, while other signal branches, i.e. the JNK and ERK pathways, make minor contributions to the intestinal inflammation induced by dietary oxysterols. p38 transduction might be the missing link connecting the known NADPH oxidase activation, and the induction of NF-κB-dependent inflammatory events related to oxysterols' action in the intestine. A NOX1/p38 MAPK/NF-κB signaling axis was demonstrated by the quenched inflammation observed on blocking individual branches of this signal with specific chemical inhibitors. Furthermore, all these signaling sites were prevented when CaCo-2 cells were pre-incubated with phenolic compounds extracted from selected wines made of typical Sardinian grape varieties: red Cannonau and white Vermentino. Notably, Cannonau was more effective than Vermentino. The effect of Sardinian wine extracts on intestinal inflammation induced by dietary oxysterols might mainly be due to their phenolic content, more abundant in Cannonau than in Vermentino. Furthermore, among different phenolic components of both wines, epicatechin and caffeic acid exerted the strongest effects. These findings show a major role of the NOX1/p38 MAPK/NF-κB signaling axis in the activation of oxysterol-dependent intestinal inflammation, and confirm the concept that phenolics act as modulators at different sites of pro-oxidant and pro-inflammatory cell signals.


Assuntos
Colesterol/análogos & derivados , Hidroxicolesteróis/efeitos adversos , Intestinos/efeitos dos fármacos , Cetocolesteróis/efeitos adversos , Fenóis/química , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Células CACO-2 , Ácidos Cafeicos/análise , Sobrevivência Celular/efeitos dos fármacos , Colesterol/efeitos adversos , Células Epiteliais/efeitos dos fármacos , Humanos , Inflamação/induzido quimicamente , Interleucina-8/metabolismo , Mucosa Intestinal/metabolismo , Intestinos/citologia , NADPH Oxidase 1 , NADPH Oxidases/metabolismo , NF-kappa B/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Regulação para Cima , Vitis/química , Vinho/análise
8.
Aging Cell ; 14(4): 569-81, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25757594

RESUMO

It is now thought that atherosclerosis, although due to increased plasma lipids, is mainly the consequence of a complicated inflammatory process, with immune responses at the different stages of plaque development. Increasing evidence points to a significant role of Toll-like receptor 4 (TLR4), a key player in innate immunity, in the pathogenesis of atherosclerosis. This study aimed to determine the effects on TLR4 activation of two reactive oxidized lipids carried by oxidized low-density lipoproteins, the oxysterol 27-hydroxycholesterol (27-OH) and the aldehyde 4-hydroxynonenal (HNE), both of which accumulate in atherosclerotic plaques and play a key role in the pathogenesis of atherosclerosis. Secondarily, it examined their potential involvement in mediating inflammation and extracellular matrix degradation, the hallmarks of high-risk atherosclerotic unstable plaques. In human promonocytic U937 cells, both 27-OH and HNE were found to enhance cell release of IL-8, IL-1ß, and TNF-α and to upregulate matrix metalloproteinase-9 (MMP-9) via TLR4/NF-κB-dependent pathway; these actions may sustain the inflammatory response and matrix degradation that lead to atherosclerotic plaque instability and to their rupture. Using specific antibodies, it was also demonstrated that these inflammatory cytokines increase MMP-9 upregulation, thus enhancing the release of this matrix-degrading enzyme by macrophage cells and contributing to plaque instability. These innovative results suggest that, by accumulating in atherosclerotic plaques, the two oxidized lipids may contribute to plaque instability and rupture. They appear to do so by sustaining the release of inflammatory molecules and MMP-9 by inflammatory and immune cells, for example, macrophages, through activation of TLR4 and its NF-κB downstream signaling.


Assuntos
Aldeídos/farmacologia , Hidroxicolesteróis/farmacologia , Monócitos/efeitos dos fármacos , Linhagem Celular , Regulação da Expressão Gênica , Humanos , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Interleucina-8/genética , Interleucina-8/metabolismo , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , Modelos Biológicos , Monócitos/metabolismo , Monócitos/patologia , NF-kappa B/genética , NF-kappa B/metabolismo , Placa Aterosclerótica/genética , Placa Aterosclerótica/metabolismo , Placa Aterosclerótica/patologia , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Transdução de Sinais , Receptor 4 Toll-Like/antagonistas & inibidores , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
9.
Sci Rep ; 4: 7487, 2014 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-25501851

RESUMO

Recent studies reported a broad but selective antiviral activity of 25-hydroxycholesterol (25HC) against enveloped viruses, being apparently inactive against non-enveloped viruses. Here we show that 25HC is endowed with a marked antiviral activity against three pathogenic non-enveloped viruses, i.e. human papillomavirus-16 (HPV-16), human rotavirus (HRoV), and human rhinovirus (HRhV), thus significantly expanding its broad antiviral spectrum, so far recognized to be limited to viruses with envelope. Moreover, here we disclose the remarkable antiviral activity of another oxysterol of physiological origin, i.e. 27-hydroxycholesterol (27HC), against HPV-16, HRoV and HRhV. We have also identified a much weaker antiviral activity of other oxysterols of pathophysiological relevance, i.e 7α-hydroxycholesterol, 7ß-hydroxycholesterol, and 7-ketocholesterol. These findings suggest that appropriate modulation of endogenous production of oxysterols might be a primary host strategy to counteract a broad panel of viral infections. Moreover, 25HC and 27HC could be considered for new therapeutic strategies against HPV-16, HRoV and HRhV.


Assuntos
Antivirais/farmacologia , Hidroxicolesteróis/farmacologia , Infecções por Papillomavirus/tratamento farmacológico , Infecções por Picornaviridae/tratamento farmacológico , Infecções por Rotavirus/tratamento farmacológico , Inativação de Vírus/efeitos dos fármacos , Animais , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Papillomavirus Humano 16/patogenicidade , Humanos , Infecções por Papillomavirus/virologia , Infecções por Picornaviridae/virologia , Rhinovirus/patogenicidade , Rotavirus/patogenicidade , Infecções por Rotavirus/virologia
10.
Free Radic Biol Med ; 77: 376-85, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25110320

RESUMO

The oxysterol 27-hydroxycholesterol (27-OH) is increasingly considered to be involved in a variety of pathophysiological processes, having been shown to modulate cell proliferation and metabolism, and also to exert proinflammatory and proapoptotic effects. This study aimed to elucidate the molecular pathways whereby 27-OH may generate survival signals in cells of the macrophage lineage, and to clarify whether its known prooxidant effect is involved in that process. A net up-regulation of survival signaling, involving the extracellular signal-regulated kinase (ERK) and phosphoinositide 3-kinase (PI3K)/Akt phosphorylation pathways, was observed in U937 promonocytic cells cultivated over time in the presence of a low micromolar concentration of the oxysterol. Interestingly, the up-regulation of both kinases was shown to be closely dependent on an early 27-OH-induced intracellular increase of reactive oxygen species (ROS). In turn, stimulation of ERK and PI3K/Akt both significantly quenched ROS steady state and markedly phosphorylated Bad, thereby determining a marked delay of the oxysterol׳s proapoptotic action. The 27-OH-induced survival pathways thus appear to be redox modulated and, if they occur within or nearby inflammatory cells during progression of chronic diseases such as cancer and atherosclerosis, they could significantly impact the growth and evolution of such diseases.


Assuntos
MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Hidroxicolesteróis/farmacologia , Processamento de Proteína Pós-Traducional , Proteínas Proto-Oncogênicas c-akt/metabolismo , Apoptose , Linhagem Celular Tumoral , Sobrevivência Celular , Humanos , Potencial da Membrana Mitocondrial , Oxirredução , Fosforilação , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais
11.
Redox Biol ; 2: 795-802, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25009781

RESUMO

Regular consumption of moderate doses of wine is an integral part of the Mediterranean diet, which has long been considered to provide remarkable health benefits. Wine's beneficial effect has been attributed principally to its non-alcoholic portion, which has antioxidant properties, and contains a wide variety of phenolics, generally called polyphenols. Wine phenolics may prevent or delay the progression of intestinal diseases characterized by oxidative stress and inflammation, especially because they reach higher concentrations in the gut than in other tissues. They act as both free radical scavengers and modulators of specific inflammation-related genes involved in cellular redox signaling. In addition, the importance of wine polyphenols has recently been stressed for their ability to act as prebiotics and antimicrobial agents. Wine components have been proposed as an alternative natural approach to prevent or treat inflammatory bowel diseases. The difficulty remains to distinguish whether these positive properties are due only to polyphenols in wine or also to the alcohol intake, since many studies have reported ethanol to possess various beneficial effects. Our knowledge of the use of wine components in managing human intestinal inflammatory diseases is still quite limited, and further clinical studies may afford more solid evidence of their beneficial effects.


Assuntos
Mucosa Intestinal/metabolismo , Vinho/análise , Animais , Antioxidantes/química , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Homeostase/efeitos dos fármacos , Humanos , Intestinos/química , Intestinos/microbiologia , Microbiota/efeitos dos fármacos , Oxirredução , Polifenóis/química , Polifenóis/farmacologia , Transdução de Sinais/efeitos dos fármacos
12.
PLoS One ; 9(5): e96795, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24802026

RESUMO

Chronic inflammatory events appear to play a fundamental role in Alzheimer's disease (AD)-related neuropathological changes, and to result in neuronal dysfunction and death. The inflammatory responses observed in the AD brain include activation and proliferation of glial cells, together with up-regulation of inflammatory mediators and of free radicals. Along with glial cells, neurons themselves can also react and contribute to neuroinflammatory changes in the AD brain, by serving as sources of inflammatory mediators. Because excess cholesterol cannot be degraded in the brain, it must be excreted from that organ as cholesterol oxidation products (oxysterols), in order to prevent its accumulation. Among risk factors for this neurodegenerative disease, a mechanistic link between altered cholesterol metabolism and AD has been suggested; oxysterols appear to be the missing linkers between the two, because of their neurotoxic effects. This study shows that 24-hydroxycholesterol, 27-hydroxycholesterol, and 7ß-hydroxycholesterol, the three oxysterols potentially implicated in AD pathogenesis, induce some pro-inflammatory mediator expression in human neuroblastoma SH-SY5Y cells, via Toll-like receptor-4/cyclooxygenase-2/membrane bound prostaglandin E synthase (TLR4/COX-2/mPGES-1); this clearly indicates that oxysterols may promote neuroinflammatory changes in AD. To confirm this evidence, cells were incubated with the anti-inflammatory flavonoid quercetin; remarkably, its anti-inflammatory effects in SH-SY5Y cells were enhanced when it was loaded into ß-cyclodextrin-dodecylcarbonate nanoparticles, versus cells pretreated with free quercetin. The goal of loading quercetin into nanoparticles was to improve its permeation across the blood-brain barrier into the brain, and its bioavailability to reach target cells. The findings show that this drug delivery system might be a new therapeutic strategy for preventing or reducing AD progression.


Assuntos
Antioxidantes/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Hidroxicolesteróis/farmacologia , Nanopartículas/química , Quercetina/farmacologia , Antioxidantes/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Humanos , Inflamação/prevenção & controle , Mediadores da Inflamação/metabolismo , Integrina beta1/genética , Integrina beta1/metabolismo , Interleucina-8/genética , Interleucina-8/metabolismo , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Quercetina/química , beta-Ciclodextrinas/química
13.
Aging Cell ; 13(3): 561-72, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24612036

RESUMO

An abnormal accumulation of cholesterol oxidation products in the brain of patients with Alzheimer's disease (AD) would further link an impaired cholesterol metabolism in the pathogenesis of the disease. The first evidence stemming from the content of oxysterols in autopsy samples from AD and normal brains points to an increase in both 27-hydroxycholesterol (27-OH) and 24-hydroxycholesterol (24-OH) in the frontal cortex of AD brains, with a trend that appears related to the disease severity. The challenge of differentiated SK-N-BE human neuroblastoma cells with patho-physiologically relevant amounts of 27-OH and 24-OH showed that both oxysterols induce a net synthesis of Aß1-42 by up-regulating expression levels of amyloid precursor protein and ß-secretase, as well as the ß-secretase activity. Interestingly, cell pretreatment with N-acetyl-cysteine (NAC) fully prevented the enhancement of ß-amyloidogenesis induced by the two oxysterols. The reported findings link an impaired cholesterol oxidative metabolism to an excessive ß-amyloidogenesis and point to NAC as an efficient inhibitor of oxysterols-induced Aß toxic peptide accumulation in the brain.


Assuntos
Acetilcisteína/metabolismo , Acetilcisteína/farmacologia , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Hidroxicolesteróis/farmacologia , Neurônios/efeitos dos fármacos , Linhagem Celular Tumoral , Progressão da Doença , Humanos , Hidroxicolesteróis/metabolismo , Neurônios/metabolismo , Estresse Oxidativo , Regulação para Cima/efeitos dos fármacos
14.
Redox Biol ; 1: 125-30, 2013 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-24024145

RESUMO

Pathological accumulation of 27-carbon intermediates or end-products of cholesterol metabolism, named oxysterols, may contribute to the onset and especially to the development of major chronic diseases in which inflammation, but also oxidative damage and to a certain extent cell death, are hallmarks and primary mechanisms of progression. Indeed, certain oxysterols exercise strong pro-oxidant and pro-inflammatory effects at concentrations detectable in the lesions typical of atherosclerosis, neurodegenerative diseases, inflammatory bowel diseases, age-related macular degeneration, and other pathological conditions characterized by altered cholesterol uptake and/or metabolism.


Assuntos
Colesterol/metabolismo , Doença Crônica , Animais , Aterosclerose/metabolismo , Humanos , Inflamação/metabolismo , Doenças Neurodegenerativas/metabolismo
15.
Biochem Pharmacol ; 86(1): 138-45, 2013 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-23583258

RESUMO

Cholesterol auto-oxidation products, namely oxysterols, are widely present in cholesterol-rich foods. They are thought to potentially interfere with homeostasis of the human digestive tract, playing a role in intestinal mucosal damage. This report concerns the marked up-regulation in differentiated CaCo-2 colonic epithelial cells of two key inflammatory interleukins, IL-6 and IL-8, caused by a mixture of oxysterols representative of a high cholesterol diet. This strong pro-inflammatory effect appeared to be dependent on the net imbalance of red-ox equilibrium with the production of excessive levels of reactive oxygen species through the colonic NADPH-oxidase NOX1 activation. Induction of NOX1 was markedly while not fully inhibited by CaCo-2 cell pre-incubation with phenolic extracts obtained from well-selected wines from typical grape varieties grown in Sardinia. Oxysterol-dependent NOX1 activation, as well as interleukin synthesis, were completely prevented by Cannonau red wine extract that contains an abundant phenolic fraction, in particular phenolic acids and flavonoids. Conversely, cell pre-treatment with Vermentino white wine extract with smaller phenolic fraction showed only a partial NOX1 down-regulation and was ineffective in interleukin synthesis induced by dietary oxysterols. It is thus likely that the effects of Sardinian wine extracts against intestinal inflammation induced by dietary oxysterols are mainly due to their high phenolic content: low doses of phenolics would be responsible only for direct scavenging oxysterol-dependent ROS production. Besides this direct activity, an excess of phenolic compounds detectable in red wine, may exert an additional indirect action by blocking oxysterol-related NOX1 induction, thus totally preventing the pro-oxidant and pro-inflammatory events triggered by dietary oxysterols.


Assuntos
Colesterol/análogos & derivados , Colesterol/farmacologia , Fenóis/farmacologia , Vinho , Células CACO-2 , Dieta , Ativação Enzimática , Humanos , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Itália , NADPH Oxidases/metabolismo
16.
Antioxid Redox Signal ; 19(14): 1711-47, 2013 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-23305298

RESUMO

Oxidative stress is thought to play a key role in the development of intestinal damage in inflammatory bowel disease (IBD), because of its primary involvement in intestinal cells' aberrant immune and inflammatory responses to dietary antigens and to the commensal bacteria. During the active disease phase, activated leukocytes generate not only a wide spectrum of pro-inflammatory cytokines, but also excess oxidative reactions, which markedly alter the redox equilibrium within the gut mucosa, and maintain inflammation by inducing redox-sensitive signaling pathways and transcription factors. Moreover, several inflammatory molecules generate further oxidation products, leading to a self-sustaining and auto-amplifying vicious circle, which eventually impairs the gut barrier. The current treatment of IBD consists of long-term conventional anti-inflammatory therapy and often leads to drug refractoriness or intolerance, limiting patients' quality of life. Immune modulators or anti-tumor necrosis factor α antibodies have recently been used, but all carry the risk of significant side effects and a poor treatment response. Recent developments in molecular medicine point to the possibility of treating the oxidative stress associated with IBD, by designing a proper supplementation of specific lipids to induce local production of anti-inflammatory derivatives, as well as by developing biological therapies that target selective molecules (i.e., nuclear factor-κB, NADPH oxidase, prohibitins, or inflammasomes) involved in redox signaling. The clinical significance of oxidative stress in IBD is now becoming clear, and may soon lead to important new therapeutic options to lessen intestinal damage in this disease.


Assuntos
Doenças Inflamatórias Intestinais/metabolismo , Animais , Anti-Inflamatórios/uso terapêutico , Humanos , Doenças Inflamatórias Intestinais/tratamento farmacológico , Oxirredução/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos
17.
Biochimie ; 95(3): 632-40, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23092829

RESUMO

Cholesterol oxidation products, termed oxysterols, have been shown to be more reactive than unoxidized cholesterol, possessing marked pro-inflammatory and cytotoxic effects in a number of cells and tissues. Oxysterols, absorbed with the diet as products of cholesterol auto-oxidation, have recently been suggested to potentially interfere with homeostasis of the mucosal intestinal epithelium, by promoting and sustaining irreversible damage. However, the treatment of colon cancer cells with a diet-compatible mixture of oxysterols does not elicit the same responses than individual components added to the cells at the same concentrations at which they are present in the mixture. Sixty µM oxysterol mixture showed a slight pro-apoptotic effect on human colon cancer CaCo-2 cell line, evaluated in terms of caspase-3 and caspase-7 activation; conversely, 7α-hydroxycholesterol, 7ß-hydroxycholesterol and 5α,6α-epoxycholesterol were identified to be able to induce a significant pro-apoptotic effect if added to cell culture singly; 7ß-hydroxycholesterol had stronger action than other compounds. The enhanced production of reactive oxygen species through up-regulation of the colonic NADPH-oxidase isoform NOX1 appeared to be the key event in oxysterol-induced apoptosis in these colon cancer cells. As regards pro-inflammatory effects of oxysterols, IL-8 and MCP-1 were evaluated for their chemotactic activity. Only MCP-1 production was significantly induced by 7ß-hydroxycholesterol, as well as by cholesterol and oxysterol mixture. However, oxysterol-induced inflammation appeared to be NOX1-independent, suggesting a secondary role of this enzyme in inducing inflammation in colon cancer cells. A selective cell death induced by specific oxysterols against colon cancer cells, mainly exploiting their ability to activate NOX1 in generating oxidative reactions, might represent a promising field of investigation in colorectal cancer, and might bring new insights on strategies in anticancer therapy.


Assuntos
Colesterol na Dieta/farmacologia , Colesterol/química , Colesterol/farmacologia , Neoplasias do Colo/patologia , Apoptose/efeitos dos fármacos , Células CACO-2 , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Homeostase/efeitos dos fármacos , Humanos , Oxirredução
18.
Int J Mol Sci ; 13(11): 14278-93, 2012 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-23203064

RESUMO

The hypercholesterolemia-atherosclerosis association is now established; hypercholesterolemia may induce vascular-cell activation, subsequently increasing expression of adhesion molecules, cytokines, chemokines, growth factors, and other key inflammatory molecules. Among inflammatory molecules expressed by vascular cells, integrins play a critical role in regulating macrophage activation and migration to the site of inflammation, by mediating cell-cell and cell-extracellular matrix interactions. The main lipid oxidation products present in oxidized LDL that may be responsible for inflammatory processes in atherogenesis, are cholesterol oxidation products, known as oxysterols. This study demonstrates the effect of an oxysterol mixture, compatible with that detectable in human hypercholesterolemic plasma, on the expression and synthesis of ß(1)-integrin in cells of the macrophage lineage. The molecular signaling whereby oxysterols induce ß(1)-integrin up-regulation is also comprehensively investigated. Over-expression of ß(1)-integrin depends on activation of classic and novel members of protein kinase C and extracellular signal-regulated kinases 1 and 2, as well as of the up-stream G-protein (Gq and G13), c-Src, and phospholipase C. In addition, the localization of ß(1)-integrin in advanced human carotid plaques is highlighted, marking its importance in atherosclerotic plaque progression.


Assuntos
Regulação da Expressão Gênica/efeitos dos fármacos , Integrina beta1/genética , Integrina beta1/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Transdução de Sinais , Esteroides/farmacologia , Aterosclerose/genética , Aterosclerose/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Humanos , Sistema de Sinalização das MAP Quinases , Oxirredução , Fosfoinositídeo Fosfolipase C/metabolismo , Placa Aterosclerótica/genética , Placa Aterosclerótica/metabolismo , Proteína Quinase C/metabolismo , Proteínas Proto-Oncogênicas pp60(c-src)/metabolismo , Interferência de RNA , Células U937
19.
Free Radic Biol Med ; 53(9): 1708-17, 2012 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-22981873

RESUMO

Lipid peroxidation is generally considered as primarily implicated in the pathogenesis of Alzheimer's disease (AD); one of its more reactive end products, 4-hydroxynonenal (HNE), has been shown to cause neuron dysfunction and degeneration. HNE production in the brain is stimulated by the amyloid-ß peptide (Aß), whose excessive accumulation in specific brain areas is a hallmark of AD. Conversely, Aß production is up-regulated by this multifunctional aldehyde. Findings reported here point to the ability of HNE and Aß to interact, with consequent potentiation of Aß's cytotoxicity as determined in vitro using neuron-like cells derived from human dental-pulp progenitor cells. Preincubation of cells with the aldehyde markedly up-regulated Aß uptake and intracellular accumulation, by overexpressing two of the three components of the plasma membrane multireceptor complex CD36/CD47/ß1-integrin: experimental and clinical data indicate that intraneuronal accumulation of Aß is an early event possibly playing a primary role in AD pathogenesis. That HNE-mediated overexpression of CD36 and ß1-integrin, which plays a key role in HNE's potentiating Aß neurotoxicity, in terms of necrosis, was confirmed when this effect was prevented by specific antibodies against the two receptors.


Assuntos
Aldeídos/farmacologia , Peptídeos beta-Amiloides/fisiologia , Polpa Dentária/citologia , Peroxidação de Lipídeos , Neurônios/metabolismo , Adulto , Doença de Alzheimer , Peptídeos beta-Amiloides/metabolismo , Peptídeos beta-Amiloides/farmacologia , Antígenos de Diferenciação/metabolismo , Apoptose , Antígenos CD36/genética , Antígenos CD36/metabolismo , Antígeno CD47/genética , Antígeno CD47/metabolismo , Diferenciação Celular , Forma do Núcleo Celular/efeitos dos fármacos , Forma Celular , Células Cultivadas , Feminino , Expressão Gênica , Humanos , Integrina beta1/genética , Integrina beta1/metabolismo , L-Lactato Desidrogenase/metabolismo , Lipídeos de Membrana/metabolismo , Necrose , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Cultura Primária de Células , Células-Tronco/efeitos dos fármacos , Células-Tronco/metabolismo , Células-Tronco/fisiologia , Regulação para Cima/efeitos dos fármacos
20.
PLoS One ; 7(7): e41839, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22848630

RESUMO

BACKGROUND: Inflammatory reactions, known to promote tumor growth and invasion, have been found associated with colorectal carcinoma (CRC). Macrophages are the chief component of the inflammatory infiltration that occurs early in the progression from non-invasive to malignant tumor, with a switch from the pro-inflammatory phenotype to the tumor-promoting phenotype. Tumor and stroma are additional sources of inflammation-related molecules. The study aimed to evaluate, during colorectal carcinogenesis from benign to malignant phases: i) the trend of serum levels of IL-8, IL-6, TGFß1, VEGF and MMPs; ii) the parallel trend of CRP serum levels; iii) derangement of the principal TGFß1 receptors (TGFß1RI/RII) in tumor tissues. METHODOLOGY/PRINCIPAL FINDINGS: 96 patients with colon adenomas or CRC at different stages of progression, and 17 controls, were recruited. Serum IL-8, IL-6, TGFß1, VEGF, MMPs and CRP levels were analyzed before endoscopy or surgery. TGFß1 receptors were evaluated in adenoma biopsies and surgically-removed colorectal adenocarcinomas. Serum levels of IL-8 in adenocarcinoma patients were increased from stage II, when also the enzymatic activity of MMP-9 increased. Of note, the increasing trend of the two serum markers was found significantly correlated. Trend of serum CRP was also very similar to that of IL-8 and MMP-9, but just below statistical significance. TGFß1 levels were lower at stage III CRC, while IL-6 and VEGF levels had no significant variations. In tissue specimens, TGFß1 receptors were already absent in about 50% of adenomas, and this percentage of missing receptors markedly increased in CRC stages III and IV. CONCLUSIONS: Combined quantification of serum IL-8, MMP-9 and CRP, appears a reliable and advanced index of inflammation-related processes during malignant phase of colorectal carcinogenesis, since these molecules remain within normal range in colorectal adenoma bearing patients, while consistently increase in the blood of CRC patients, even if from stage II only.


Assuntos
Neoplasias Colorretais/sangue , Neoplasias Colorretais/patologia , Interleucina-8/sangue , Metaloproteinase 9 da Matriz/sangue , Adenocarcinoma/sangue , Adenocarcinoma/enzimologia , Adenocarcinoma/patologia , Adenoma/sangue , Adenoma/enzimologia , Adenoma/patologia , Idoso , Idoso de 80 Anos ou mais , Proteína C-Reativa/metabolismo , Neoplasias Colorretais/enzimologia , Progressão da Doença , Feminino , Humanos , Interleucina-6/sangue , Masculino , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Receptores de Fatores de Crescimento Transformadores beta/sangue , Fatores de Tempo , Fator de Crescimento Transformador beta1/sangue , Fator A de Crescimento do Endotélio Vascular/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA