Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 941, 2022 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-35177595

RESUMO

During development, pseudostratified epithelia undergo large scale morphogenetic events associated with increased mechanical stress. Using a variety of genetic and imaging approaches, we uncover that in the mouse E6.5 epiblast, where apical tension is highest, ASPP2 safeguards tissue integrity. It achieves this by preventing the most apical daughter cells from delaminating apically following division events. In this context, ASPP2 maintains the integrity and organisation of the filamentous actin cytoskeleton at apical junctions. ASPP2 is also essential during gastrulation in the primitive streak, in somites and in the head fold region, suggesting that it is required across a wide range of pseudostratified epithelia during morphogenetic events that are accompanied by intense tissue remodelling. Finally, our study also suggests that the interaction between ASPP2 and PP1 is essential to the tumour suppressor function of ASPP2, which may be particularly relevant in the context of tissues that are subject to increased mechanical stress.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Epitélio/crescimento & desenvolvimento , Morfogênese , Proteínas Supressoras de Tumor/metabolismo , Citoesqueleto de Actina/metabolismo , Animais , Células CACO-2 , Polaridade Celular , Cães , Técnicas de Cultura Embrionária , Embrião de Mamíferos , Epitélio/metabolismo , Feminino , Gastrulação , Camadas Germinativas , Humanos , Células Madin Darby de Rim Canino , Camundongos , Camundongos Transgênicos , Mutação , Linha Primitiva , Receptores de Neuropeptídeo Y/metabolismo , Estresse Mecânico , Junções Íntimas/metabolismo , Proteínas Supressoras de Tumor/genética
2.
Proc Natl Acad Sci U S A ; 115(41): 10375-10380, 2018 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-30232257

RESUMO

Mammalian embryos are surrounded by an acellular shell, the zona pellucida. Hatching out of the zona is crucial for implantation and continued development of the embryo. Clinically, problems in hatching can contribute to failure in assisted reproductive intervention. Although hatching is fundamentally a mechanical process, due to limitations in methodology most studies focus on its biochemical properties. To understand the role of mechanical forces in hatching, we developed a hydrogel deformation-based method and analytical approach for measuring pressure in cyst-like tissues. Using this approach, we found that, in cultured blastocysts, pressure increased linearly, with intermittent falls. Inhibition of Na/K-ATPase led to a dosage-dependent reduction in blastocyst cavity pressure, consistent with its requirement for cavity formation. Reducing blastocyst pressure reduced the probability of hatching, highlighting the importance of mechanical forces in hatching. These measurements allowed us to infer details of microphysiology such as osmolarity, ion and water transport kinetics across the trophectoderm, and zona stiffness, allowing us to model the embryo as a thin-shell pressure vessel. We applied this technique to test whether cryopreservation, a process commonly used in assisted reproductive technology (ART), leads to alteration of the embryo and found that thawed embryos generated significantly lower pressure than fresh embryos, a previously unknown effect of cryopreservation. We show that reduced pressure is linked to delayed hatching. Our approach can be used to optimize in vitro fertilization (IVF) using precise measurement of embryo microphysiology. It is also applicable to other biological systems involving cavity formation, providing an approach for measuring forces in diverse contexts.


Assuntos
Blastocisto/fisiologia , Embrião de Mamíferos/fisiologia , Desenvolvimento Embrionário/fisiologia , Fertilização in vitro , Hidrogéis/química , Zona Pelúcida/fisiologia , Animais , Blastocisto/citologia , Células Cultivadas , Criopreservação , Transferência Embrionária , Embrião de Mamíferos/citologia , Feminino , Camundongos , Gravidez
3.
Langmuir ; 27(17): 10970-6, 2011 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-21744833

RESUMO

A very simple, environmentally friendly, one-step oxidative polymerization route to fabricate polypyrrole (Ppy) nanoparticles of fixed size and morphology was developed and investigated. The herein proposed method is based on the application of sodium dodecyl sulfate and hydrogen peroxide, both easily degradable and cheap materials. The polymerization reaction is performed on 24 h time scale under standard conditions. We monitored a polaronic peak at 465 nm and estimated nanoparticle concentration during various stages of the reaction. Using this data we proposed a mechanism for Ppy nanoparticle formation in accordance with earlier emulsion polymerization mechanisms. Rates of various steps in the polymerization mechanism were accounted for and the resulting particles identified using atomic force microscopy. Application of Ppy nanoparticles prepared by the route presented here seems very promising for biomedical applications where biocompatibility is paramount. In addition, this kind of synthesis could be suitable for the development of solar cells, where very pure and low-cost conducting polymers are required.


Assuntos
Peróxido de Hidrogênio/química , Nanopartículas/química , Polímeros/síntese química , Pirróis/síntese química , Modelos Moleculares , Estrutura Molecular , Tamanho da Partícula , Polimerização , Polímeros/química , Pirróis/química , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA