Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Mol Cell Cardiol ; 186: 125-137, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38008210

RESUMO

N-terminal cardiac myosin-binding protein C (cMyBP-C) domains (C0-C2) bind to thick (myosin) and thin (actin) filaments to coordinate contraction and relaxation of the heart. These interactions are regulated by phosphorylation of the M-domain situated between domains C1 and C2. In cardiomyopathies and heart failure, phosphorylation of cMyBP-C is significantly altered. We aimed to investigate how cMyBP-C interacts with myosin and actin. We developed complementary, high-throughput, C0-C2 FRET-based binding assays for myosin and actin to characterize the effects due to 5 HCM-linked variants or functional mutations in unphosphorylated and phosphorylated C0-C2. The assays indicated that phosphorylation decreases binding to both myosin and actin, whereas the HCM mutations in M-domain generally increase binding. The effects of mutations were greatest in phosphorylated C0-C2, and some mutations had a larger effect on actin than myosin binding. Phosphorylation also altered the spatial relationship of the probes on C0-C2 and actin. The magnitude of these structural changes was dependent on C0-C2 probe location (C0, C1, or M-domain). We conclude that binding can differ between myosin and actin due to phosphorylation or mutations. Additionally, these variables can change the mode of binding, affecting which of the interactions in cMyBP-C N-terminal domains with myosin or actin take place. The opposite effects of phosphorylation and M-domain mutations is consistent with the idea that cMyBP-C phosphorylation is critical for normal cardiac function. The precision of these assays is indicative of their usefulness in high-throughput screening of drug libraries for targeting cMyBP-C as therapy.


Assuntos
Citoesqueleto de Actina , Actinas , Proteínas de Transporte , Actinas/metabolismo , Fosforilação , Citoesqueleto de Actina/metabolismo , Miosinas/genética , Miosinas/metabolismo , Mutação
2.
J Biol Chem ; 299(12): 105369, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37865311

RESUMO

Cardiac MyBP-C (cMyBP-C) interacts with actin and myosin to fine-tune cardiac muscle contractility. Phosphorylation of cMyBP-C, which reduces the binding of cMyBP-C to actin and myosin, is often decreased in patients with heart failure (HF) and is cardioprotective in model systems of HF. Therefore, cMyBP-C is a potential target for HF drugs that mimic its phosphorylation and/or perturb its interactions with actin or myosin. We labeled actin with fluorescein-5-maleimide (FMAL) and the C0-C2 fragment of cMyBP-C (cC0-C2) with tetramethylrhodamine (TMR). We performed two complementary high-throughput screens (HTS) on an FDA-approved drug library, to discover small molecules that specifically bind to cMyBP-C and affect its interactions with actin or myosin, using fluorescence lifetime (FLT) detection. We first excited FMAL and detected its FLT, to measure changes in fluorescence resonance energy transfer (FRET) from FMAL (donor) to TMR (acceptor), indicating binding. Using the same samples, we then excited TMR directly, using a longer wavelength laser, to detect the effects of compounds on the environmentally sensitive FLT of TMR, to identify compounds that bind directly to cC0-C2. Secondary assays, performed on selected modulators with the most promising effects in the primary HTS assays, characterized the specificity of these compounds for phosphorylated versus unphosphorylated cC0-C2 and for cC0-C2 versus C1-C2 of fast skeletal muscle (fC1-C2). A subset of identified compounds modulated ATPase activity in cardiac and/or skeletal myofibrils. These assays establish the feasibility of the discovery of small-molecule modulators of the cMyBP-C-actin/myosin interaction, with the ultimate goal of developing therapies for HF.


Assuntos
Proteínas de Transporte , Descoberta de Drogas , Insuficiência Cardíaca , Miofibrilas , Bibliotecas de Moléculas Pequenas , Humanos , Actinas/metabolismo , Descoberta de Drogas/métodos , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/metabolismo , Miocárdio/metabolismo , Miosinas/metabolismo , Fosforilação/efeitos dos fármacos , Ligação Proteica/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/farmacologia , Avaliação Pré-Clínica de Medicamentos , Miofibrilas/efeitos dos fármacos , Proteínas de Transporte/metabolismo , Técnicas Biossensoriais , Adenosina Trifosfatases/metabolismo , Músculo Esquelético/metabolismo , Proteínas Recombinantes/metabolismo , Ativação Enzimática/efeitos dos fármacos , Transferência Ressonante de Energia de Fluorescência
3.
J Mol Cell Cardiol ; 166: 116-126, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35227736

RESUMO

Cardiac myosin-binding protein C (cMyBP-C) is a thick filament-associated protein of the sarcomere and a potential therapeutic target for treating contractile dysfunction in heart failure. Mimicking the structural dynamics of phosphorylated cMyBP-C by small-molecule drug binding could lead to therapies that modulate cMyBP-C conformational states, and thereby function, to improve contractility. We have developed a human cMyBP-C biosensor capable of detecting intramolecular structural changes due to phosphorylation and mutation. Using site-directed mutagenesis and time-resolved fluorescence resonance energy transfer (TR-FRET), we substituted cysteines in cMyBP-C N-terminal domains C0 through C2 (C0-C2) for thiol-reactive fluorescent probe labeling to examine C0-C2 structure. We identified a cysteine pair that upon donor-acceptor labeling reports phosphorylation-sensitive structural changes between the C1 domain and the tri-helix bundle of the M-domain that links C1 to C2. Phosphorylation reduced FRET efficiency by ~18%, corresponding to a ~11% increase in the distance between probes and a ~30% increase in disorder between them. The magnitude and precision of phosphorylation-mediated TR-FRET changes, as quantified by the Z'-factor, demonstrate the assay's potential for structure-based high-throughput screening of compounds for cMyBP-C-targeted therapies to improve cardiac performance in heart failure. Additionally, by probing C1's spatial positioning relative to the tri-helix bundle, these findings provide new molecular insight into the structural dynamics of phosphoregulation as well as mutations in cMyBP-C. Biosensor sensitivity to disease-relevant mutations in C0-C2 was demonstrated by examination of the hypertrophic cardiomyopathy mutation R282W. The results presented here support a screening platform to identify small molecules that regulate N-terminal cMyBP-C conformational states.


Assuntos
Transferência Ressonante de Energia de Fluorescência , Insuficiência Cardíaca , Proteínas de Transporte , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/metabolismo , Humanos , Mutação , Fosforilação
4.
J Biol Chem ; 294(44): 16228-16240, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31519753

RESUMO

Cardiac myosin-binding protein C (cMyBP-C) is a thick filament-associated protein that influences actin-myosin interactions. cMyBP-C alters myofilament structure and contractile properties in a protein kinase A (PKA) phosphorylation-dependent manner. To determine the effects of cMyBP-C and its phosphorylation on the microsecond rotational dynamics of actin filaments, we attached a phosphorescent probe to F-actin at Cys-374 and performed transient phosphorescence anisotropy (TPA) experiments. Binding of cMyBP-C N-terminal domains (C0-C2) to labeled F-actin reduced rotational flexibility by 20-25°, indicated by increased final anisotropy of the TPA decay. The effects of C0-C2 on actin TPA were highly cooperative (n = ∼8), suggesting that the cMyBP-C N terminus impacts the rotational dynamics of actin spanning seven monomers (i.e. the length of tropomyosin). PKA-mediated phosphorylation of C0-C2 eliminated the cooperative effects on actin flexibility and modestly increased actin rotational rates. Effects of Ser to Asp phosphomimetic substitutions in the M-domain of C0-C2 on actin dynamics only partially recapitulated the phosphorylation effects. C0-C1 (lacking M-domain/C2) similarly exhibited reduced cooperativity, but not as reduced as by phosphorylated C0-C2. These results suggest an important regulatory role of the M-domain in cMyBP-C effects on actin structural dynamics. In contrast, phosphomimetic substitution of the glycogen synthase kinase (GSK3ß) site in the Pro/Ala-rich linker of C0-C2 did not significantly affect the TPA results. We conclude that cMyBP-C binding and PKA-mediated phosphorylation can modulate actin dynamics. We propose that these N-terminal cMyBP-C-induced changes in actin dynamics help explain the functional effects of cMyBP-C phosphorylation on actin-myosin interactions.


Assuntos
Actinas/metabolismo , Proteínas de Transporte/metabolismo , Citoesqueleto de Actina/metabolismo , Animais , Miosinas Cardíacas/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Polarização de Fluorescência/métodos , Humanos , Medições Luminescentes/métodos , Contração Muscular/fisiologia , Músculo Esquelético/metabolismo , Miofibrilas/metabolismo , Miosinas/metabolismo , Fosforilação , Ligação Proteica/fisiologia , Coelhos , Rotação , Sarcômeros/metabolismo
5.
J Mol Cell Cardiol ; 125: 140-148, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30359561

RESUMO

RATIONALE: Mutations in the gene encoding the sarcomeric protein cardiac myosin-binding protein C (cMyBP-C) are a leading cause of hypertrophic cardiomyopathy (HCM). Mouse models targeting cMyBP-C and use of recombinant proteins have been effective in studying its roles in contractile function and disease. Surprisingly, while the N-terminus of cMyBP-C is important to regulate myofilament binding and contains many HCM mutations, an incorrect sequence, lacking the N-terminal 8 amino acids has been used in many studies. OBJECTIVES: To determine the N-terminal cMyBP-C sequences in ventricles and investigate the roles of species-specific differences in cMyBP-C on myofilament binding. METHODS AND RESULTS: We determined cMyBP-C sequences in mouse and human by inspecting available sequence databases. N-terminal differences were confirmed using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Cosedimentation assays with actin or myosin were used to examine binding in mouse, human and chimeric fusion proteins of cMyBP-C. Time-resolved FRET (TR-FRET) with site-directed probes on cMyBP-C was employed to measure structural dynamics. LC-MS/MS supported the sequencing data that mouse cMyBP-C contains an eight-residue N-terminal extension (NTE) not found in human. Cosedimentation assays revealed that cardiac myosin binding was strongly influenced by the presence of the NTE, which reduced binding by 60%. 75% more human C0-C2 than mouse bound to myosin. Actin binding of mouse C0-C2 was not affected by the NTE. 50% more human C0-C2 than mouse bound to actin. TR-FRET indicates that the NTE did not significantly affect structural dynamics across domains C0 and C1. CONCLUSIONS: Our functional results are consistent with the idea that cardiac myosin binding of N-terminal cMyBP-C is reduced in the mouse protein due to the presence of the NTE, which is proposed to interfere with myosin regulatory light chain (RLC) binding. The NTE is a critical component of mouse cMyBP-C, and should be considered in extrapolation of studies to cMyBP-C and HCM mechanisms in human.


Assuntos
Proteínas de Transporte/metabolismo , Miofibrilas/metabolismo , Actinas/metabolismo , Animais , Proteínas de Transporte/química , Proteínas de Transporte/genética , Cromatografia Líquida , Humanos , Camundongos , Miosinas/metabolismo , Ligação Proteica , Proteínas Recombinantes/metabolismo , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA