Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Plant Physiol ; 210: 24-37, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28040626

RESUMO

Exposure to salinity induces a burst in ethylene synthesis in the wild tomato halophyte plant species Solanum chilense. In order to gain information on the role of ethylene in salt adaptation, plants of Solanum chilense (accession LA4107) and of cultivated glycophyte Solanum lycopersicum (cv. Ailsa Craig) were cultivated for 7days in nutrient solution containing 0 or 125mM NaCl in the presence or absence of the inhibitor of ethylene synthesis (aminovinylglycine (AVG) 2µM). Salt-induced ethylene synthesis in S. chilense occurred concomitantly with an increase in stomatal conductance, an efficient osmotic adjustment and the maintenance of carbon isotope discrimination value (Δ13C). In contrast, in S. lycopersicum, salt stress decreased stomatal conductance and Δ13C values while osmotic potential remained higher than in S. chilense. Inhibition of stress-induced ethylene synthesis by AVG decreased stomatal conductance and Δ13C in S. chilense and compromised osmotic adjustment. Solanum chilense behaved as an includer and accumulated high amounts of Na in the shoot but remained able to maintain K nutrition in the presence of NaCl. This species however did not stimulate the expression of genes coding for high-affinity K transport but genes coding for ethylene responsive factor ERF5 and JREF1 were constitutively more expressed in S. chilense than in S. lycopersicum. It is concluded that ethylene plays a key role in salt tolerance of S. chilense.


Assuntos
Etilenos/antagonistas & inibidores , Glicina/análogos & derivados , Glicina/farmacologia , Tolerância ao Sal/efeitos dos fármacos , Solanum/fisiologia , Plantas Tolerantes a Sal/fisiologia
2.
Environ Sci Technol ; 49(18): 11158-66, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26301775

RESUMO

Dead leaves of the Neptune grass, Posidonia oceanica (L.) Delile, in the Mediterranean coastal zone, are colonized by an abundant "detritivorous" invertebrate community that is heavily predated by fishes. This community was sampled in August 2011, November 2011, and March 2012 at two different sites in the Calvi Bay (Corsica). Ingested artificial fibers (AFs) of various sizes and colors were found in 27.6% of the digestive tracts of the nine dominant species regardless of their trophic level or taxon. No seasonal, spatial, size, or species-specific significant differences were revealed; suggesting that invertebrates ingest AFs at constant rates. Results showed that, in the gut contents of invertebrates, varying by trophic level, and across trophic levels, the overall ingestion of AFs was low (approximately 1 fiber per organism). Raman spectroscopy revealed that the ingested AFs were composed of viscose, an artificial, cellulose-based polymer. Most of these AFs also appeared to have been colored by industrial dyes. Two dyes were identified: Direct Blue 22 and Direct Red 28. The latter is known for being carcinogenic for vertebrates, potentially causing environmental problems for the P. oceanica litter community. Techniques such as Raman spectroscopy are necessary to investigate the particles composition, instead of relying on fragment size or color to identify the particles ingested by animals.


Assuntos
Alismatales/química , Celulose/química , Invertebrados/metabolismo , Plásticos/química , Poluentes Atmosféricos/análise , Animais , Celulose/ultraestrutura , França , Mucosa Gástrica/metabolismo , Análise Espectral Raman
3.
Plant Cell Environ ; 37(6): 1299-320, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24237383

RESUMO

Cadmium and zinc share many similar physiochemical properties, but their compartmentation, complexation and impact on other mineral element distribution in plant tissues may drastically differ. In this study, we address the impact of 10 µm Cd or 50 µm Zn treatments on ion distribution in leaves of a metallicolous population of the non-hyperaccumulating species Zygophyllum fabago at tissue and cell level, and the consequences on the plant response through a combined physiological, proteomic and metabolite approach. Micro-proton-induced X-ray emission and laser ablation inductively coupled mass spectrometry analyses indicated hot spots of Cd concentrations in the vicinity of vascular bundles in response to Cd treatment, essentially bound to S-containing compounds as revealed by extended X-ray absorption fine structure and non-protein thiol compounds analyses. A preferential accumulation of Zn occurred in vascular bundle and spongy mesophyll in response to Zn treatment, and was mainly bound to O/N-ligands. Leaf proteomics and physiological status evidenced a protection of photosynthetically active tissues and the maintenance of cell turgor through specific distribution and complexation of toxic ions, reallocation of some essential elements, synthesis of proteins involved in photosynthetic apparatus or C-metabolism, and metabolite synthesis with some specificities regarding the considered heavy metal treatment.


Assuntos
Cádmio/metabolismo , Zinco/metabolismo , Zygophyllum/metabolismo , Transporte Biológico , Cádmio/análise , Clorofila/metabolismo , Terapia a Laser , Espectrometria de Massas , Fotossíntese , Folhas de Planta/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/isolamento & purificação , Proteínas de Plantas/metabolismo , Proteoma , Espectrometria por Raios X , Zinco/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA