Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 23(13): 5919-5926, 2023 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-37390368

RESUMO

Exerting forces on biomolecules inside living cells would allow us to probe their dynamic interactions in their native environment. Magnetic iron oxide nanoparticles represent a unique tool capable of pulling on biomolecules with the application of an external magnetic field gradient; however, their use has been restricted to biomolecules accessible from the extracellular medium. Targeting intracellular biomolecules represents an additional challenge due to potential nonspecific interactions with cytoplasmic or nuclear components. We present the synthesis of sulfobetaine-phosphonate block copolymer ligands, which provide magnetic nanoparticles that are stealthy and targetable in living cells. We demonstrate, for the first time, their efficient targeting in the nucleus and their use for magnetic micromanipulation of a specific genomic locus in living cells. We believe that these stable and sensitive magnetic nanoprobes represent a promising tool to manipulate specific biomolecules in living cells and probe the mechanical properties of living matter at the molecular scale.


Assuntos
Nanopartículas , Polímeros , Micromanipulação , Genômica , Nanopartículas Magnéticas de Óxido de Ferro , Fenômenos Magnéticos
2.
Cancers (Basel) ; 14(10)2022 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-35626059

RESUMO

Inorganic nanocrystals, such as gold, iron oxide and semiconductor quantum dots, offer promising prospects for cancer diagnostics, imaging and therapy, due to their specific plasmonic, magnetic or fluorescent properties. The organic coating, or surface ligands, of these nanoparticles ensures their colloidal stability in complex biological fluids and enables their functionalization with targeting functions. It also controls the interactions of the nanoparticle with biomolecules in their environment. It therefore plays a crucial role in determining nanoparticle biodistribution and, ultimately, the imaging or therapeutic efficiency. This review summarizes the various strategies used to develop optimal surface chemistries for the in vivo preclinical and clinical application of inorganic nanocrystals. It discusses the current understanding of the influence of the nanoparticle surface chemistry on its colloidal stability, interaction with proteins, biodistribution and tumor uptake, and the requirements to develop an optimal surface chemistry.

3.
Cancers (Basel) ; 12(12)2020 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-33322532

RESUMO

The efficient intraoperative identification of cancers requires the development of the bright, minimally-toxic, tumor-specific near-infrared (NIR) probes as contrast agents. Luminescent semiconductor quantum dots (QDs) offer several unique advantages for in vivo cellular imaging by providing bright and photostable fluorescent probes. Here, we present the synthesis of ZnCuInSe/ZnS core/shell QDs emitting in NIR (~750 nm) conjugated to NAVPNLRGDLQVLAQKVART (A20FMDV2) peptide for targeting αvß6 integrin-rich head and neck squamous cell carcinoma (HNSCC). Integrin αvß6 is usually not detectable in nonpathological tissues, but is highly upregulated in HNSCC. QD-A20 showed αvß6 integrin-specific binding in two-dimension (2D) monolayer and three-dimension (3D) spheroid in vitro HNSCC models. QD-A20 exhibit limited penetration (ca. 50 µm) in stroma-rich 3D spheroids. Finally, we demonstrated the potential of these QDs by time-gated fluorescence imaging of stroma-rich 3D spheroids placed onto mm-thick tissue slices to mimic imaging conditions in tissues. Overall, QD-A20 could be considered as highly promising nanoprobes for NIR bioimaging and imaging-guided surgery.

4.
Biomaterials ; 219: 119357, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31351245

RESUMO

In the last few years, zwitterionic polymers have been developed as antifouling surface coatings. However, their ability to completely suppress protein adsorption at the surface of nanoparticles in complex biological media remains undemonstrated. Here we investigate the formation of hard (irreversible) and soft (reversible) protein corona around model nanoparticles (NPs) coated with sulfobetaine (SB), phosphorylcholine (PC) and carboxybetaine (CB) polymer ligands in model albumin solutions and in whole serum. We show for the first time a complete absence of protein corona around SB-coated NPs, while PC- and CB-coated NPs undergo reversible adsorption or partial aggregation. These dramatic differences cannot be described by naïve hard/soft acid/base electrostatic interactions. Single NP tracking in the cytoplasm of live cells corroborate these in vitro observations. Finally, while modification of SB polymers with additional charged groups lead to consequent protein adsorption, addition of small neutral targeting moieties preserves antifouling and enable efficient intracellular targeting.


Assuntos
Materiais Revestidos Biocompatíveis/química , Nanopartículas/química , Polímeros/química , Coroa de Proteína/química , Betaína/análogos & derivados , Betaína/química , Biotina/química , Hidrodinâmica , Ligantes , Fosforilcolina/química , Pontos Quânticos/química
5.
ACS Appl Mater Interfaces ; 11(28): 25008-25016, 2019 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-31264837

RESUMO

Intracellular and extracellular pH are key parameters in many physiological processes and diseases. For example, the extracellular pH of the tumor micro-environment is slightly more acidic than in healthy tissue. In vivo mapping of the extracellular pH within the tumor would therefore improve our understanding of the tumor physiology. Fluorescent semiconductor quantum dots (QDs) represent interesting probes for in vivo imaging, in particular in the shortwave infrared (SWIR) range. Here, pH-sensitive QD nanoprobes are developed using a conformation-switchable surface chemistry. The central fluorescent QD is coated with a copolymer ligand and conjugated to gold nanoparticle quenchers. As the pH decreases from physiological (7.5) to slightly acidic (5.5-6), the copolymer reversibly shrinks, which increases the energy transfer between the QD and the gold quenchers and modulates the QD fluorescence signal. This enables the design of ratiometric QD probes for biological pH range emitting in the visible or SWIR range. In addition, these probes can be easily encapsulated and remain functional within ghost erythrocyte membranes, which facilitate their in vivo application.

6.
Artigo em Inglês | MEDLINE | ID: mdl-31024905

RESUMO

Early detection of tumors is today a major challenge and requires sensitive imaging methodologies coupled with new efficient probes. In vivo optical bioluminescence imaging has been widely used in the field of preclinical oncology to visualize tumors and several cancer cell lines have been genetically modified to provide bioluminescence signals. However, the light emitted by the majority of commonly used luciferases is usually in the blue part of the visible spectrum, where tissue absorption is still very high, making deep tissue imaging non-optimal, and calling for optimized optical imaging methodologies. We have previously shown that red-shifting of bioluminescence signal by Fluorescence Unbound Excitation from Luminescence (FUEL) is a mean to increase bioluminescence signal sensitivity detection in vivo. Here, we applied FUEL to tumor detection in two different subcutaneous tumor models: the auto-luminescent human embryonic kidney (HEK293) cell line and the murine B16-F10 melanoma cell line previously transfected with a plasmid encoding the Luc2 firefly luciferase. Tumor size and bioluminescence were measured over time and tumor vascularization characterized. We then locally injected near infrared emitting Quantum Dots (NIR QDs) in the tumor site and observed a red-shifting of bioluminescence signal by (FUEL) indicating that FUEL could be used to allow deeper tumor detection in mice.

7.
ACS Nano ; 13(3): 3125-3131, 2019 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-30835434

RESUMO

Whereas in vivo fluorescence imaging of cells immobilized within tissues provides a valuable tool to a broad range of biological studies, it still lacks the sensitivity required to visualize isolated cells circulating fast in the bloodstream due, in particular, to the autofluorescence from endogenous fluorophores. Time-gated imaging of near-infrared emitting ZnCuInSe/ZnS quantum dots (QDs) with fluorescence lifetimes in the range of 150-300 ns enables the efficient rejection of fast autofluorescence photons and the selection of QD fluorescence photons, thus significantly increasing sensitivity. We labeled model erythrocytes as well as lymphoma cells using these QDs coated with a stable zwitterionic polymer surface chemistry. After reinjection in the bloodstream, we were able to image and count individual QD-labeled cells circulating at mm·s-1 velocities in blood vessels.


Assuntos
Imagem Óptica , Pontos Quânticos/química , Análise de Célula Única , Animais , Linhagem Celular Tumoral , Eritrócitos/citologia , Fluorescência , Voluntários Saudáveis , Humanos , Raios Infravermelhos , Masculino , Ratos , Ratos Sprague-Dawley , Espectrometria de Fluorescência , Propriedades de Superfície , Fatores de Tempo
8.
Photodiagnosis Photodyn Ther ; 26: 150-156, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30885845

RESUMO

BACKGROUND: Quantum dots (QDs) bring new insights in cancer theranostics. Exceptional brightness together with the simple possibility to modify surface with targeting molecules make QDs attractive agents in fluorescence guided surgery and photodynamic therapy. Currently, many targeted QDs have been developed for theranostic purpose. However, their targeting ability was tested mainly in two dimensional monolayer tumor cell models, while our study includes 3D tumor model reflecting the specificity of in vivo tumor environment. METHODS: Core/multilayer shell CdSe/CdS/ZnS QDs were conjugated with folic acid (FA) and characterized spectroscopically. Cytotoxicity of QDs on KB and A549 cells lines were evaluated using the MTT assay. Cellular uptake of QDs was assessed by epifluorescent microscopy. To study the distribution of QDs in tumor tissue, KB spheroids were prepared by means of the liquid overlay technique and then frozen cut of spheroids treated with QDs were imaged by epifluorescence microscopy. RESULTS: We confirmed the specificity of QD-FA for the folic acid receptor positive KB cells. In 3D tumor spheroid model we demonstrated uptake enhancement of QD-FA compared with non-targeted QD. It was demonstrated that penetration profiles were similar for both QDs with penetration depth never exceeding 100 µm. CONCLUSIONS: We have demonstrated the effectiveness of FA conjugated QDs to target tumor spheroids thus confirming the crucial role of FRα receptor as a target. Further improvement of QD-FA targeting ability could be performed using dual targeting different targeting agents, such as FA and cyclic RGD.


Assuntos
Ácido Fólico/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Bucais/tratamento farmacológico , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/uso terapêutico , Pontos Quânticos/uso terapêutico , Células A549 , Linhagem Celular Tumoral , Humanos , Técnicas In Vitro , Células KB , Microscopia de Fluorescência , Fármacos Fotossensibilizantes/química , Pontos Quânticos/química
9.
ACS Appl Mater Interfaces ; 10(20): 17107-17116, 2018 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-29701456

RESUMO

In the last decades, fluorescent quantum dots (QDs) have appeared as high-performance biological fluorescent nanoprobes and have been explored for a variety of biomedical optical imaging applications. However, many central challenges still exist concerning the control of the surface chemistry to ensure high biocompatibility, low toxicity, antifouling, and specific active targeting properties. Regarding in vivo applications, circulation time and clearance of the nanoprobe are also key parameters to control the design and characterization of new optical imaging agents. Herein, the complete design and characterization of a peptide-near-infrared-QD-based nanoprobe for biomedical optical imaging is presented from the synthesis of the QDs and the zwitterionic-azide copolymer ligand, enabling a bio-orthogonal coupling, till the final in vivo test through all the characterization steps. The developed nanoprobes show high fluorescence emission, controlled grafting rate, low toxicity, in vitro active specific targeting, and in vivo long circulating blood time. This is, to our knowledge, the first report characterizing the in vivo circulation kinetics and tumor accumulation of targeted zwitterionic QDs.


Assuntos
Pontos Quânticos , Humanos , Neoplasias , Imagem Óptica , Peptídeos
10.
ACS Appl Mater Interfaces ; 7(48): 26904-13, 2015 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-26551755

RESUMO

Distinctive optical properties of inorganic quantum dot (QD) nanoparticles promise highly valuable probes for fluorescence-based detection methods, particularly for in vivo diagnostics, cell phenotyping via multiple markers or single molecule tracking. However, despite high hopes, this promise has not been fully realized yet, mainly due to difficulties at producing stable, nontoxic QD bioconjugates of negligible nonspecific binding. Here, a universal platform for antibody binding to QDs is presented that builds upon the controlled functionalization of CdSe/CdS/ZnS nanoparticles capped with a multidentate dithiol/zwitterion copolymer ligand. In a change-of-paradigm approach, thiol groups are concomitantly used as anchoring and bioconjugation units to covalently bind up to 10 protein A molecules per QD while preserving their long-term colloidal stability. Protein A conjugated to QDs then enables the oriented, stoichiometrically controlled immobilization of whole, unmodified antibodies by simple incubation. This QD-protein A immobilization platform displays remarkable antibody functionality retention after binding, usually a compromised property in antibody conjugation to surfaces. Typical QD-protein A-antibody assemblies contain about three fully functional antibodies. Validation experiments show that these nanobioconjugates overcome current limitations since they retain their colloidal stability and antibody functionality over 6 months, exhibit low nonspecific interactions with live cells and have very low toxicity: after 48 h incubation with 1 µM QD bioconjugates, HeLa cells retain more than 80% of their cellular metabolism. Finally, these QD nanobioconjugates possess a high specificity for extra- and intracellular targets in live and fixed cells. The dithiol/zwitterion QD-protein A nanoconjugates have thus a latent potential to become an off-the-shelf tool destined to unresolved biological questions.


Assuntos
Anticorpos/metabolismo , Imagem Molecular/métodos , Nanoconjugados/química , Pontos Quânticos/química , Caderinas/metabolismo , Difusão Dinâmica da Luz , Endocitose , Células HeLa , Humanos , Proteínas Imobilizadas/metabolismo , Ligantes , Células MCF-7 , Tamanho da Partícula , Receptor CB1 de Canabinoide/metabolismo , Proteína Estafilocócica A/metabolismo
11.
ACS Nano ; 9(11): 11479-89, 2015 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-26505527

RESUMO

Long-term inspection of biological phenomena requires probes of elevated intra- and extracellular stability and target biospecificity. The high fluorescence and photostability of quantum dot (QD) nanoparticles contributed to foster their promise as bioimaging tools that could overcome limitations associated with traditional fluorophores. However, QDs' potential as a bioimaging platform relies upon a precise control over the surface chemistry modifications of these nano-objects. Here, a zwitterion-vinylimidazole block copolymer ligand was synthesized, which regroups all anchoring groups in one compact terminal block, while the rest of the chain is endowed with antifouling and bioconjugation moieties. By further application of an oriented bioconjugation approach with whole IgG antibodies, QD nanobioconjugates were obtained that display outstanding intra- and extracellular stability as well as biorecognition capacity. Imaging the internalization and intracellular dynamics of a transmembrane cell receptor, the CB1 brain cannabinoid receptor, both in HEK293 cells and in neurons, illustrates the breadth of potential applications of these nanoprobes.


Assuntos
Betaína/análogos & derivados , Diagnóstico por Imagem/métodos , Imidazóis/química , Polímeros/química , Pontos Quânticos/química , Betaína/síntese química , Betaína/química , Coloides , Fluoresceína/química , Células HEK293 , Células HeLa , Humanos , Concentração de Íons de Hidrogênio , Imidazóis/síntese química , Cinética , Polimerização , Polímeros/síntese química , Receptor CB1 de Canabinoide/metabolismo , Propriedades de Superfície
12.
Small ; 8(7): 1029-37, 2012 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-22378567

RESUMO

The in vivo labeling of intracellular components with quantum dots (QDs) is very limited because of QD aggregation in the cell cytoplasm and/or QD confinement into lysosomal compartments. In order to improve intracellular targeting with QDs, various surface chemistries and delivery methods have been explored, but they have not yet been compared systematically with respect to the QD intracellular stability. In this work, the intracellular aggregation kinetics of QDs for three different surface chemistries based on ligand exchange or encapsulation with amphiphilic polymers are compared. For each surface chemistry, three delivery methods for bringing the nanoparticles into the cells are compared: electroporation, microinjection, and pinocytosis. It is concluded that the QD intracellular aggregation behavior is strongly dependent on the surface chemistry. QDs coated with dihydrolipoic acid-sulfobetaine (DHLA-SB) ligands diffuse freely in cells for longer periods of time than for QDs in the other chemistries tested, and they can access all cytoplasmic compartments. Even when conjugated to streptavidin, these DHLA-SB QDs remain freely diffusing inside the cytoplasm and unaggregated, and they are able to reach a biotinylated target inside HeLa cells. Such labeling was more efficient when compared to commercial streptavidin-conjugated QDs, which may be due to the smaller size of DHLA-SB QDs and/or to their superior intracellular stability.


Assuntos
Betaína/análogos & derivados , Pontos Quânticos , Ácido Tióctico/análogos & derivados , Animais , Betaína/química , Citoplasma/metabolismo , Eletroporação , Embrião não Mamífero/metabolismo , Células HeLa , Humanos , Microinjeções , Ácido Tióctico/química , Xenopus laevis
13.
Langmuir ; 26(14): 12321-9, 2010 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-20527978

RESUMO

Two amino-terminated amphiphilic copolymers, M600 and M1000, with different ethylene oxide to propylene oxide EO/PO ratios, 1/9 and 19/3, respectively, were coupled by thioctic acid, which allows an excellent affinity with gold surface. Then, amphiphilic thermally responsive gold nanoparticles (AuNPs) were prepared either by ligands exchange on precursor gold nanoparticles or by direct reduction of gold source in presence of stabilizing copolymers. The as-obtained AuNPs are monodisperse with a size varying from 2 to 17 nm depending on the synthesis used. The main parameters controlling the AuNPs assemblies were identified: the ethylene oxide to propylene oxide ratio in the polymer corona, the ionic strength of the solution, and the curvature of AuNPs. An interesting result is the possibility to tune the aggregation temperature from 8 to 15 degrees C of AuNPs coated by the same polymer only by changing the curvature of the AuNPs from 17 to 2 nm. This temperature change versus the curvature of the nanoparticle is ascribed to the decrease in hydration volume per hydrophilic group in the corona due to the change of the polymer chain conformation with changing the particle size. Moreover, one unique aggregation temperature between 12 and 60 degrees C can be also obtained by mixing copolymers with different EO/PO ratios. Then, the corona, constituted by a mixture of polymers, behaves as a corona composed by an average statistic copolymer with the intermediate composition.


Assuntos
Ouro/química , Nanopartículas Metálicas/química , Polietilenos/química , Polipropilenos/química , Ligantes , Tamanho da Partícula , Temperatura
14.
ACS Nano ; 4(5): 2531-8, 2010 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-20387796

RESUMO

Semiconductor quantum dots (QDs) could significantly impact the performance of biomedical near-infrared (NIR) imaging by providing fluorescent probes that are brighter and more photostable than conventional organic dyes. However, the toxicity of the components of NIR emitting II-VI and IV-VI QDs that have been made so far (Cd, Hg, Te, Pb, etc.) has remained a major obstacle to the clinical use of QDs. Here, we present the synthesis of CuInS(2)/ZnS core/shell QDs emitting in the NIR ( approximately 800 nm) with good quantum yield and stability even after transfer into water. We demonstrate the potential of these QDs by imaging two regional lymph nodes (LNs) in vivo in mice. We then compare the inflammatory response of the axillary LN induced by different doses of CuInS(2)/ZnS and CdTeSe/CdZnS QDs and show a clear difference in acute local toxicity, the onset of inflammation only occurring at a 10 times more concentrated dose for CuInS(2)/ZnS QDs than for their Cd-containing counterparts.


Assuntos
Cobre/química , Cobre/toxicidade , Índio/química , Índio/toxicidade , Linfonodos/metabolismo , Imagem Molecular/métodos , Pontos Quânticos , Sulfetos/química , Sulfetos/toxicidade , Compostos de Zinco/química , Compostos de Zinco/toxicidade , Tecido Adiposo/citologia , Animais , Cádmio/química , Cor , Feminino , Inflamação/induzido quimicamente , Raios Infravermelhos , Metástase Linfática/diagnóstico , Camundongos , Processos Fotoquímicos , Biópsia de Linfonodo Sentinela , Solubilidade , Sulfetos/síntese química , Propriedades de Superfície , Água/química , Compostos de Zinco/síntese química
15.
J Am Chem Soc ; 132(13): 4556-7, 2010 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-20235547

RESUMO

We have developed a novel surface coating for semiconductor quantum dots (QDs) based on a heterobifunctional ligand that overcomes most of the previous limits of these fluorescent probes in bioimaging applications. Here we show that QDs capped with bidentate zwitterionic dihydrolipoic acid-sulfobetaine (DHLA-SB) ligands are a favorable alternative to polyethylene glycol-coated nanoparticles since they combine small sizes, low nonspecific adsorption, preserved optical properties, and excellent stability over time and a wide range of pH and salinity. Additionally, these QDs can easily be functionalized with biomolecules such as streptavidin (SA) and biotin. We applied streptavidin-functionalized DHLA-SB QDs to track the intracellular recycling of cannabinoid receptor 1 (CB1R) in live cells. These QDs selectively recognized the pool of receptors at the cell surface via SA-biotin interactions with negligible nonspecific adsorption. The QDs retained their optical properties, allowing the internalization of CB1R into endosomes to be followed. Moreover, the cellular activity was apparently unaffected by the probe.


Assuntos
Betaína/análogos & derivados , Imagem Molecular/métodos , Pontos Quânticos , Ácido Tióctico/análogos & derivados , Betaína/química , Linhagem Celular , Sobrevivência Celular , Humanos , Ligantes , Microscopia de Fluorescência , Tamanho da Partícula , Receptor CB1 de Canabinoide/química , Propriedades de Superfície , Ácido Tióctico/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA