Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
JCI Insight ; 9(8)2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38646934

RESUMO

Acute myeloid leukemia (AML) is a fatal disease characterized by the accumulation of undifferentiated myeloblasts, and agents that promote differentiation have been effective in this disease but are not curative. Dihydroorotate dehydrogenase inhibitors (DHODHi) have the ability to promote AML differentiation and target aberrant malignant myelopoiesis. We introduce HOSU-53, a DHODHi with significant monotherapy activity, which is further enhanced when combined with other standard-of-care therapeutics. We further discovered that DHODHi modulated surface expression of CD38 and CD47, prompting the evaluation of HOSU-53 combined with anti-CD38 and anti-CD47 therapies, where we identified a compelling curative potential in an aggressive AML model with CD47 targeting. Finally, we explored using plasma dihydroorotate (DHO) levels to monitor HOSU-53 safety and found that the level of DHO accumulation could predict HOSU-53 intolerability, suggesting the clinical use of plasma DHO to determine safe DHODHi doses. Collectively, our data support the clinical translation of HOSU-53 in AML, particularly to augment immune therapies. Potent DHODHi to date have been limited by their therapeutic index; however, we introduce pharmacodynamic monitoring to predict tolerability while preserving antitumor activity. We additionally suggest that DHODHi is effective at lower doses with select immune therapies, widening the therapeutic index.


Assuntos
Leucemia Mieloide Aguda , Pirimidinas , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/imunologia , Humanos , Pirimidinas/uso terapêutico , Camundongos , Animais , Di-Hidro-Orotato Desidrogenase , Imunoterapia/métodos , Linhagem Celular Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto , Feminino
2.
Cancers (Basel) ; 16(3)2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38339323

RESUMO

BACKGROUND: Acute myeloid leukemia (AML) is the malignant proliferation of immature myeloid cells characterized by a block in differentiation. As such, novel therapeutic strategies to promote the differentiation of immature myeloid cells have been successful in AML, although these agents are targeted to a specific mutation that is only present in a subset of AML patients. In the current study, we show that targeting the epigenetic modifier enhancer of zeste homolog 2 (EZH2) can induce the differentiation of immature blast cells into a more mature myeloid phenotype and promote survival in AML murine models. METHODS: The EZH2 inhibitor EPZ011989 (EPZ) was studied in AML cell lines, primary in AML cells and normal CD34+ stem cells. A pharmacodynamic assessment of H3K27me3; studies of differentiation, cell growth, and colony formation; and in vivo therapeutic studies including the influence on primary AML cell engraftment were also conducted. RESULTS: EPZ inhibited H3K27me3 in AML cell lines and primary AML samples in vitro. EZH2 inhibition reduced colony formation in multiple AML cell lines and primary AML samples, while exhibiting no effect on colony formation in normal CD34+ stem cells. In AML cells, EPZ promoted phenotypic evidence of differentiation. Finally, the pretreatment of primary AML cells with EPZ significantly delayed engraftment and prolonged the overall survival when engrafted into immunodeficient mice. CONCLUSIONS: Despite evidence that EZH2 silencing in MDS/MPN can promote AML pathogenesis, our data demonstrate that the therapeutic inhibition of EZH2 in established AML has the potential to improve survival.

3.
Eur J Med Chem ; 254: 115342, 2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37071962

RESUMO

Cyclin-dependent kinase 9 (CDK9) is a promising therapeutic target in multiple cancer types, including acute myeloid leukemia (AML). Protein degraders, also known as proteolysis targeting chimeras (PROTACs), have emerged as tools for the selective degradation of cancer targets, including CDK9, complementing the activity of traditional small-molecule inhibitors. These compounds typically incorporate previously reported inhibitors and a known E3 ligase ligand to induce ubiquitination and subsequent degradation of the target protein. Although many protein degraders have been reported in the literature, the properties of the linker necessary for efficient degradation still require special attention. In this study, a series of protein degraders was developed, employing the clinically tested CDK inhibitor AT7519. The purpose of this study was to examine the effect that linker composition, specifically chain length, would have on potency. In addition to establishing a baseline of activity for various linker compositions, two distinct homologous series, a fully alkyl series and an amide-containing series, were prepared, demonstrating the dependence of degrader potency in these series on linker length and the correlation with predicted physicochemical properties.


Assuntos
Quinase 9 Dependente de Ciclina , Leucemia Mieloide Aguda , Humanos , Proteólise , Quinase 9 Dependente de Ciclina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Proteínas/metabolismo , Leucemia Mieloide Aguda/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA