Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
Clin Cancer Res ; 29(11): 2158-2169, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36951682

RESUMO

PURPOSE: G-CSF enhances colon cancer development. This study defines the prevalence and effects of increased G-CSF signaling in human colon cancers and investigates G-CSF inhibition as an immunotherapeutic strategy against metastatic colon cancer. EXPERIMENTAL DESIGN: Patient samples were used to evaluate G-CSF and G-CSF receptor (G-CSFR) levels by IHC with sera used to measure G-CSF levels. Peripheral blood mononuclear cells were used to assess the rate of G-CSFR+ T cells and IFNγ responses to chronic ex vivo G-CSF. An immunocompetent mouse model of peritoneal metastasis (MC38 cells in C57Bl/6J) was used to determine the effects of G-CSF inhibition (αG-CSF) on survival and the tumor microenvironment (TME) with flow and mass cytometry. RESULTS: In human colon cancer samples, the levels of G-CSF and G-CSFR are higher compared to normal colon tissues from the same patient. High patient serum G-CSF is associated with increases in markers of poor prognosis, (e.g., VEGF, IL6). Circulating T cells from patients express G-CSFR at double the rate of T cells from controls. Prolonged G-CSF exposure decreases T cell IFNγ production. Treatment with αG-CSF shifts both the adaptive and innate compartments of the TME and increases survival (HR, 0.46; P = 0.0237) and tumor T-cell infiltration, activity, and IFNγ response with greater effects in female mice. There is a negative correlation between serum G-CSF levels and tumor-infiltrating T cells in patient samples from women. CONCLUSIONS: These findings support G-CSF as an immunotherapeutic target against colon cancer with greater potential benefit in women.


Assuntos
Neoplasias do Colo , Fator Estimulador de Colônias de Granulócitos , Humanos , Feminino , Camundongos , Animais , Leucócitos Mononucleares , Linfócitos T , Receptores de Fator Estimulador de Colônias de Granulócitos/fisiologia , Neoplasias do Colo/tratamento farmacológico , Imunoterapia , Microambiente Tumoral
2.
ACS Nano ; 17(4): 3847-3864, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36779870

RESUMO

Postoperative abdominal adhesions are a common problem after surgery and can produce serious complications. Current antiadhesive strategies focus mostly on physical barriers and are unsatisfactory and inefficient. In this study, we designed and synthesized advanced injectable cream-like hydrogels with multiple functionalities, including rapid gelation, self-healing, antioxidation, anti-inflammation, and anti-cell adhesion. The multifunctional hydrogels were facilely formed by the conjugation reaction of epigallocatechin-3-gallate (EGCG) and hyaluronic acid (HA)-based microgels and poly(vinyl alcohol) (PVA) based on the dynamic boronic ester bond. The physicochemical properties of the hydrogels including antioxidative and anti-inflammatory activities were systematically characterized. A mouse cecum-abdominal wall adhesion model was implemented to investigate the efficacy of our microgel-based hydrogels in preventing postoperative abdominal adhesions. The hydrogels, with a high molecular weight HA, significantly decreased the inflammation, oxidative stress, and fibrosis and reduced the abdominal adhesion formation, compared to the commercial Seprafilm group or Injury-only group. Label-free quantitative proteomics analysis demonstrated that S100A8 and S100A9 expressions were associated with adhesion formation; the microgel-containing hydrogels inhibited these expressions. The microgel-containing hydrogels with multifunctionality decreased the formation of postoperative intra-abdominal adhesions in a murine model, demonstrating promise for clinical applications.


Assuntos
Parede Abdominal , Microgéis , Camundongos , Animais , Hidrogéis/química , Parede Abdominal/patologia , Parede Abdominal/cirurgia , Aderências Teciduais/prevenção & controle , Aderências Teciduais/patologia , Inflamação/patologia
3.
Cells ; 11(9)2022 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-35563787

RESUMO

One of the major obstacles in treating brain cancers, particularly glioblastoma multiforme, is the occurrence of secondary tumor lesions that arise in areas of the brain and are inoperable while obtaining resistance to current therapeutic agents. Thus, gaining a better understanding of the cellular factors that regulate glioblastoma multiforme cellular movement is imperative. In our study, we demonstrate that the 5'-3' exoribonuclease XRN2 is important to the invasive nature of glioblastoma. A loss of XRN2 decreases cellular speed, displacement, and movement through a matrix of established glioblastoma multiforme cell lines. Additionally, a loss of XRN2 abolishes tumor formation in orthotopic mouse xenograft implanted with G55 glioblastoma multiforme cells. One reason for these observations is that loss of XRN2 disrupts the expression profile of several cellular factors that are important for tumor invasion in glioblastoma multiforme cells. Importantly, XRN2 mRNA and protein levels are elevated in glioblastoma multiforme patient samples. Elevation in XRN2 mRNA also correlates with poor overall patient survival. These data demonstrate that XRN2 is an important cellular factor regulating one of the major obstacles in treating glioblastomas and is a potential molecular target that can greatly enhance patient survival.


Assuntos
Neoplasias Encefálicas , Exorribonucleases , Glioblastoma , Animais , Neoplasias Encefálicas/metabolismo , Movimento Celular/genética , Proliferação de Células , Exorribonucleases/metabolismo , Glioblastoma/metabolismo , Humanos , Camundongos , Processos Neoplásicos , RNA Mensageiro/uso terapêutico
4.
J Cell Mol Med ; 26(2): 570-582, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34910361

RESUMO

Glioblastoma (GBM) is the most common primary malignant brain tumour in adults. Despite a multimodal treatment response, survival for GBM patients remains between 12 and 15 months. Anti-ELTD1 antibody therapy is effective in decreasing tumour volumes and increasing animal survival in an orthotopic GBM xenograft. OKN-007 is a promising chemotherapeutic agent that is effective in various GBM animal models and is currently in two clinical trials. In this study, we sought to compare anti-ELTD1 and OKN-007 therapies, as single agents and combined, against bevacizumab, a commonly used therapeutic agent against GBM, in a human G55 xenograft mouse model. MRI was used to monitor tumour growth, and immunohistochemistry (IHC) was used to assess tumour markers for angiogenesis, cell migration and proliferation in the various treatment groups. OKN and anti-ELTD1 treatments significantly increased animal survival, reduced tumour volumes and normalized the vasculature. Additionally, anti-ELTD1 was also shown to significantly affect other pro-angiogenic factors such as Notch1 and VEGFR2. Unlike bevacizumab, anti-ELTD1 and OKN treatments did not induce a pro-migratory phenotype within the tumours. Anti-ELTD1 treatment was shown to be as effective as OKN therapy. Both OKN and anti-ELTD1 therapies show promise as potential single-agent multi-focal therapies for GBM patients.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Animais , Anticorpos Monoclonais/uso terapêutico , Benzenossulfonatos/farmacologia , Benzenossulfonatos/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Humanos , Iminas , Camundongos , Óxidos de Nitrogênio , Receptores Acoplados a Proteínas G
5.
Am J Nucl Med Mol Imaging ; 11(5): 363-373, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34754607

RESUMO

The blood-brain barrier (BBB) is usually impermeable to several drugs, which hampers treatment of various brain-related diseases/disorders. There have been several approaches to open the BBB, including intracarotid infusion of hyperosmotic concentrations of arabinose, mannitol, oleic or linoleic acids, or alkylglycerols, intravenous infusion of bradykinin B2, administration of a fragment of the ZO toxin from vibrio cholera, targeting specific components of the tight junctions (e.g. claudin-5) with siRNA or novel peptidomimetic drugs, or the use of ultrasound with microbubbles. We propose the use of a low molecular weight (MW), nitrone-type compound, OKN-007, which can temporarily open up the BBB for 1-2 hours. Gadolinium (Gd)-based compounds assessed ranged in MW from 546 (Gd-DTPA) to 465 kDa (ß-galactosidase-Gd-DOTA). We also included an albumin-based CA (albumin-Gd-DTPA-biotin) for assessment, as well as an antibody (Ab) against a neuron-specific biomarker conjugated to Gd-DOTA (anti-EphB2-Gd-DOTA). For the anti-EphB2 (goat Ab)-Gd-DOTA assessment, we utilized an anti-goat Ab conjugated with horse radish peroxidase (HRP) for confirmation of the presence of the anti-EphB2-Gd-DOTA probe. In addition, a Cy5 labeled anti-EphB2 Ab was co-administered with the anti-EphB2-Gd-DOTA probe, and assessed ex vivo. This study demonstrates that OKN-007 may be able to temporarily open up the BBB to augment the delivery of various compounds ranging in MW from as small as ~550 to as large as ~470 kDa. This compound is an investigational new drug for glioblastoma (GBM) therapy in clinical trials. The translational capability for human use to augment the delivery of non-BBB-permeable drugs is extremely high.

6.
Neurooncol Adv ; 3(1): vdab132, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34704036

RESUMO

BACKGROUND: Glioblastoma (GBM) is the most aggressive malignant primary brain tumor in adults. These high-grade gliomas undergo unregulated vascular angiogenesis, migration and cell proliferation allowing the tumor cells to evade cell-cycle checkpoints and apoptotic pathways. The Epidermal growth factor, latrophilin, and seven transmembrane domain-containing 1 on chromosome 1 (ELTD1) is an angiogenic biomarker that is highly expressed in malignant gliomas. Novel treatments targeting ELTD1 with monovalent monoclonal (mmAb) and single chain variable fragment (scFv) antibodies were effective in increasing animal survival, decreasing tumor volume and normalizing the vasculature. Due to the success of our antibody treatments on angiogenesis, this study sought to determine if our anti-ELTD1 treatments affected other aspects of tumorigenesis (cell proliferation, migration, and apoptosis) in a G55 glioma xenograft preclinical mouse model. METHODS: Tumor tissue from untreated, mmAb and scFv anti-ELTD1 treated animals was used to quantify the positivity levels of human mitochondrial antibody, c-MET and Ki-67 for cellular proliferation, migratory markers CD44v6, TRPM8, and BMP2, and cleaved caspase 3 to assess apoptotic activity. RESULTS: This approach demonstrated that our anti-ELTD1 treatments directly affected and decreased the human tumor cells within the tumor region. Additionally, there was a significant decrease in both cellular proliferation and migration due to anti-ETLD1 therapy. Lastly, anti-ELTD1 treatments successfully increased apoptotic activity within the tumor region. CONCLUSION: Our data suggest that anti-ELTD1 therapies would be effective against malignant gliomas by having a multi-focal effect and targeting all four aspects of tumorigenesis.

7.
Brain Sci ; 11(5)2021 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-33946285

RESUMO

It is important to develop minimally invasive biomarker platforms to help in the identification and monitoring of patients with Alzheimer's disease (AD). Assisting in the understanding of biochemical mechanisms as well as identifying potential novel biomarkers and therapeutic targets would be an added benefit of such platforms. This study utilizes a simplified and novel serum profiling platform, using mass spectrometry (MS), to help distinguish AD patient groups (mild and moderate) and controls, as well as to aid in understanding of biochemical phenotypes and possible disease development. A comparison of discriminating sera mass peaks between AD patients and control individuals was performed using leave one [serum sample] out cross validation (LOOCV) combined with a novel peak classification valuation (PCV) procedure. LOOCV/PCV was able to distinguish significant sera mass peak differences between a group of mild AD patients and control individuals with a p value of 10-13. This value became non-significant (p = 0.09) when the same sera samples were randomly allocated between the two groups and reanalyzed by LOOCV/PCV. This is indicative of physiological group differences in the original true-pathology binary group comparison. Similarities and differences between AD patients and traumatic brain injury (TBI) patients were also discernable using this novel LOOCV/PCV platform. MS/MS peptide analysis was performed on serum mass peaks comparing mild AD patients with control individuals. Bioinformatics analysis suggested that cell pathways/biochemical phenotypes affected in AD include those involving neuronal cell death, vasculature, neurogenesis, and AD/dementia/amyloidosis. Inflammation, autoimmunity, autophagy, and blood-brain barrier pathways also appear to be relevant to AD. An impaired VWF/ADAMTS13 vasculature axis with connections to F8 (factor VIII) and LRP1 and NOTCH1 was indicated and is proposed to be important in AD development.

8.
Mult Scler Relat Disord ; 49: 102786, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33517175

RESUMO

Multiple sclerosis (MS) and glioblastoma (GBM) are two distinct diseases that affect the central nervous system (CNS). However, perturbation in CNS vasculature are hallmarks of both diseases. ELTD1 (epidermal growth factor, latrophilin, and 7 transmembrane domain containing protein 1 on chromosome 1) is associated with vascular development, and has been linked with tumor angiogenesis. In glioblastomas, we detected over-expression of ELTD1, and found that an antibody targeting ELTD1 could increase animal survival and decrease tumor volumes in a xenograft GBM model. RNA-seq analysis of the preclinical data in the model for GBM identified that some of the molecular pathways affected by the anti-ELTD1 antibody therapy are also found to be associated with MS. In this study, we used molecular-targeted (mt) MR imaging and immunohistochemistry to assess ELTD1 levels in experimental autoimmune encephalomyelitis (EAE), a mouse model of MS. Specifically, we found that ELTD1 is readily detected in the brains of mice with EAE and is predominantly found in the corpus callosum. In addition, we found that the blood-brain barrier (BBB) was compromised in the brains of EAE mice using contrast-enhanced MRI (CE-MRI), as well as altered relative cerebral blood flow (rCBF) in the brains and cervical spinal cords of these mice using perfusion imaging, compared to controls. These findings indicate that ELTD1 may be a promising biomarker for CNS-inflammation in MS.


Assuntos
Encefalomielite Autoimune Experimental , Esclerose Múltipla , Animais , Biomarcadores , Barreira Hematoencefálica , Modelos Animais de Doenças , Encefalomielite Autoimune Experimental/diagnóstico por imagem , Camundongos , Camundongos Endogâmicos C57BL , Esclerose Múltipla/diagnóstico por imagem , Medula Espinal
9.
J Transl Med ; 18(1): 424, 2020 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-33168005

RESUMO

BACKGROUND: Diffuse intrinsic pontine glioma (DIPG) is the most common brainstem cancer in childhood. This rapidly progressing brainstem glioma holds a very dismal prognosis with median survival of less than 1 year. Despite extensive research, no significant therapeutic advancements have been made to improve overall survival in DIPG patients. METHODS: Here, we used an orthotopic xenograft pediatric DIPG (HSJD-DIPG-007) mouse model to monitor the effects of anti-cancer agent, OKlahoma Nitrone-007 (OKN-007), as an inhibitor of tumor growth after 28 days of treatment. Using magnetic resonance imaging (MRI), we confirmed the previously described efficacy of LDN-193189, a known activin A receptor, type I (ACVR1) inhibitor, in decreasing tumor burden and found that OKN-007 was equally efficacious. RESULTS: After 28 days of treatment, the tumor volumes were significantly decreased in OKN-007 treated mice (p < 0.01). The apparent diffusion coefficient (ADC), as a measure of tissue structural alterations, was significantly decreased in OKN-007 treated tumor-bearing mice (p < 0.0001). Histological analysis also showed a significant decrease in CD34 expression, essential for angiogenesis, of OKN-007 treated mice (p < 0.05) compared to LDN-193189 treated mice. OKN-007-treated mice also significantly decreased protein expression of the human nuclear antigen (HNA) (p < 0.001), ACVR1 (p < 0.0001), and c-MET (p < 0.05), as well as significantly increased expression of cleaved caspase 3 (p < 0.001) and histone H3 K27-trimethylation (p < 0.01), compared to untreated mouse tumors. CONCLUSIONS: With the dismal prognosis and limited effective chemotherapy available for DIPG, there is significant room for continued research studies, and OKN-007 merits further exploration as a therapeutic agent.


Assuntos
Neoplasias do Tronco Encefálico , Glioma Pontino Intrínseco Difuso , Glioma , Animais , Neoplasias do Tronco Encefálico/tratamento farmacológico , Criança , Glioma/tratamento farmacológico , Humanos , Camundongos , Óxidos de Nitrogênio , Oklahoma
10.
PLoS One ; 15(10): e0239282, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33095778

RESUMO

OBJECTIVES: To determine if the URO-MCP-1 mouse model for bladder IC/BPS is associated with in vivo bladder hyper-permeability, as measured by contrast-enhanced MRI (CE-MRI), and assess whether molecular-targeted MRI (mt-MRI) can visualize in vivo claudin-2 expression as a result of bladder hyper-permeability. Interstitial cystitis/bladder pain syndrome (IC/BPS) is a chronic, painful condition of the bladder that affects primarily women. It is known that permeability plays a substantial role in IC/BPS. Claudins are tight junction membrane proteins that are expressed in epithelia and endothelia and form paracellular barriers and pores that determine tight junction permeability. Claudin-2 is a molecular marker that is associated with increased hyperpermeability in the urothelium. MATERIALS AND METHODS: CE-MRI was used to measure bladder hyper-permeability in the URO-MCP-1 mice. A claudin-2-specific mt-MRI probe was used to assess in vivo levels of claudin-2. The mt-MRI probe consists of an antibody against claudin-2 conjugated to albumin that had Gd-DTPA (gadolinium diethylenetriamine pentaacetate) and biotin attached. Verification of the presence of the mt-MRI probe was done by targeting the biotin moiety for the probe with streptavidin-horse radish peroxidase (SA-HRP). Trans-epithelial electrical resistance (TEER) was also used to assess bladder permeability. RESULTS: The URO-MCP-1 mouse model for IC/BPS was found to have a significant increase in bladder permeability, following liposaccharide (LPS) exposure, compared to saline-treated controls. mt-MRI- and histologically-detectable levels of the claudin-2 probe were found to increase with LPS -induced bladder urothelial hyper-permeability in the URO-MCP-1 IC mouse model. Levels of protein expression for claudin-2 were confirmed with immunohistochemistry and immunofluorescence imaging. Claudin-2 was also found to highly co-localize with zonula occlidens-1 (ZO-1), a tight junction protein. CONCLUSION: The combination of CE-MRI and TEER approaches were able to demonstrate hyper-permeability, a known feature associated with some IC/BPS patients, in the LPS-exposed URO-MCP-1 mouse model. This MRI approach could be clinically translated to establish which IC/BPS patients have bladder hyper-permeability and help determine therapeutic options. In addition, the in vivo molecular-targeted imaging approach can provide invaluable information to enhance our understanding associated with bladder urothelium hyper-permeability in IC/BPS patients, and perhaps be used to assist in developing further therapeutic strategies.


Assuntos
Claudina-2/metabolismo , Cistite Intersticial/patologia , Imageamento por Ressonância Magnética/métodos , Sondas Moleculares/química , Bexiga Urinária/fisiopatologia , Animais , Anticorpos/química , Anticorpos/imunologia , Claudina-2/imunologia , Cistite Intersticial/metabolismo , Modelos Animais de Doenças , Gadolínio DTPA/química , Imuno-Histoquímica , Lipopolissacarídeos/toxicidade , Camundongos , Permeabilidade/efeitos dos fármacos , Albumina Sérica/química
11.
PLoS One ; 15(8): e0234539, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32756554

RESUMO

Diabetes Mellitus (DM) accelerates coronary artery disease (CAD) and atherosclerosis, the causes of most heart attacks. The biomolecules involved in these inter-related disease processes are not well understood. This study analyzes biomolecules in the sera of patients with CAD, with and without type (T) 2DM, who are about to undergo coronary artery bypass graft (CABG) surgery. The goal is to develop methodology to help identify and monitor CAD patients with and without T2DM, in order to better understand these phenotypes and to glean relationships through analysis of serum biomolecules. Aorta, fat, muscle, and vein tissues from CAD T2DM patients display diabetic-related histologic changes (e.g., lipid accumulation, fibrosis, loss of cellularity) when compared to non-diabetic CAD patients. The patient discriminatory methodology utilized is serum biomolecule mass profiling. This mass spectrometry (MS) approach is able to distinguish the sera of a group of CAD patients from controls (p value 10-15), with the CAD group containing both T2DM and non-diabetic patients. This result indicates the T2DM phenotype does not interfere appreciably with the CAD determination versus control individuals. Sera from a group of T2DM CAD patients however are distinguishable from non-T2DM CAD patients (p value 10-8), indicating it may be possible to examine the T2DM phenotype within the CAD disease state with this MS methodology. The same serum samples used in the CAD T2DM versus non-T2DM binary group comparison were subjected to MS/MS peptide structure analysis to help identify potential biochemical and phenotypic changes associated with CAD and T2DM. Such peptide/protein identifications could lead to improved understanding of underlying mechanisms, additional biomarkers for discriminating and monitoring these disease conditions, and potential therapeutic targets. Bioinformatics/systems biology analysis of the peptide/protein changes associated with CAD and T2DM suggested cell pathways/systems affected include atherosclerosis, DM, fibrosis, lipogenesis, loss of cellularity (apoptosis), and inflammation.


Assuntos
Doença da Artéria Coronariana/sangue , Doença da Artéria Coronariana/complicações , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/complicações , Angiopatias Diabéticas/sangue , Adulto , Idoso , Biomarcadores/sangue , Proteínas Sanguíneas/metabolismo , Estudos de Casos e Controles , Ponte de Artéria Coronária , Doença da Artéria Coronariana/cirurgia , Estudos Transversais , Angiopatias Diabéticas/cirurgia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fenótipo , Estudos Retrospectivos , Espectrometria de Massas por Ionização por Electrospray , Biologia de Sistemas , Espectrometria de Massas em Tandem
12.
Br J Cancer ; 123(4): 624-632, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32451467

RESUMO

BACKGROUND: Women with colorectal cancer (CRC) have a significant survival advantage over men. Sex influences on the tumour microenvironment (TME) are not well characterised, despite the importance of immune response in CRC. We hypothesised that sex-divergent immune responses could contribute to survival. METHODS: Using a murine model of metastatic CRC, we examined T cells, macrophages, and cytokines locally and systemically. TME and serum cytokines were measured by multiplex bead-based arrays, while FCA was used to identify cells and phenotypes. IHC provided spatial confirmation of T cell infiltration. RESULTS: Females had increased survival and T cell infiltration. CD8, CD4 and Th2 populations correlated with longer survival. Males had increased serum levels of chemokines and inflammation-associated cytokines. Within the TME, males had lower cytokine levels than females, and a shallower cytokine gradient to the periphery. Female tumours had elevated IL-10+ macrophages, which correlated with survival. CONCLUSIONS: These data demonstrate survival-associated differences in the immune response of males and females to metastatic CRC. Females showed changes in cytokine production accompanied by increased immune cell populations, biased toward Th2-axis phenotypes. Key differences in the immune response to CRC correlated with survival in this model. These differences support a multi-faceted shift across the TME.


Assuntos
Neoplasias Colorretais/imunologia , Citocinas/sangue , Macrófagos/metabolismo , Linfócitos T/metabolismo , Imunidade Adaptativa , Animais , Linhagem Celular Tumoral , Feminino , Humanos , Imunidade Inata , Masculino , Camundongos , Metástase Neoplásica , Transplante de Neoplasias , Fenótipo , Caracteres Sexuais , Análise de Sobrevida , Microambiente Tumoral
13.
Am J Nucl Med Mol Imaging ; 10(1): 57-65, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32211219

RESUMO

The objective was to investigate if some of the key molecular players associated with bladder hyper-permeability in interstitial cystitis/bladder pain syndrome (IC/BPS) could be visualized with molecularly-targeted magnetic resonance imaging (mt-MRI) in vivo. IC/BPS is a chronic, painful condition of the bladder that affects primarily women. It has been demonstrated over the past several decades that permeability plays a substantial role in IC/BPS. There are several key molecular markers that have been associated with permeability, including glycolsaminoglycan (GAG), biglycan, chondroitin sulfate, decorin, E-cadherin, keratin 20, uroplakin, vascular endothelial growth factor receptor 1 (VEGF-R1), claudin-2 and zonula occludens-1 (ZO-1). We used in vivo molecularly-targeted MRI (mt-MRI) to assess specific urothelial biomarkers (decorin, VEGF-R1, and claudin-2) associated with bladder hyper-permeability in a protamine sulfate (PS)-induced rat model. The mt-MRI probes consisted of an antibody against either VEGF-R1, decorin or claudin-2 conjugated to albumin that had also Gd-DTPA (gadolinium diethylene triamine penta acetic acid) and biotin attached. mt-MRI- and histologically-detectable levels of decorin and VEGF-R1 were both found to decrease following PS-induced bladder urothelial hyper-permeability, whereas claudin-2, was found to increase in the rat PS model. Verification of the presence of the mt-MRI probes were done by targeting the biotin moiety for each respective probe with streptavidin-hose radish peroxidase (HRP). Levels of protein expression for VEGF-R1, decorin and claudin-2 were confirmed with immunohistochemistry. In vivo molecularly-targeted MRI (mt-MRI) was found to successfully detect alterations in the expression of decorin, VEGFR1 and claudin-2 in a PS-induced rat bladder permeability model. This in vivo molecularly-targeted imaging approach has the potential to provide invaluable information to enhance our understanding of bladder urothelium hyper-permeability in IC/BPS patients, and perhaps be used to assist in developing novel therapeutic strategies.

14.
Transl Oncol ; 13(3): 100737, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32208341

RESUMO

Glioblastoma (GBM), the most common primary brain tumor found in adults, is extremely aggressive. These high-grade gliomas, which are very diffuse, highly vascular, and invasive, undergo unregulated vascular angiogenesis. Despite available treatments, the median survival for patients is dismal. ELTD1 (EGF, latrophilin, and 7 transmembrane domain containing protein 1) is an angiogenic biomarker highly expressed in human high-grade gliomas. Recent studies have demonstrated that the blood-brain barrier, as well as the blood-tumor barrier, is not equally disrupted in GBM patients. This study therefore aimed to optimize an antibody treatment against ELTD1 using a smaller scFv fragment of a monoclonal antibody that binds against the external region of ELTD1 in a G55 glioma xenograft glioma preclinical model. Morphological magnetic resonance imaging (MRI) was used to determine tumor volumes and quantify perfusion rates. We also assessed percent survival following tumor postdetection. Tumor tissue was also assessed to confirm and quantify the presence of the ELTD1 scFv molecular targeted MRI probe, as well as microvessel density and Notch1 levels. In addition, we used molecular-targeted MRI to localize our antibodies in vivo. This approach showed that our scFv antibody attached-molecular MRI probe was effective in targeting and localizing diffuse tumor regions. Through this analysis, we determined that our anti-ELTD1 scFv antibody treatments were successful in increasing survival, decreasing tumor volumes, and normalizing vascular perfusion and Notch1 levels within tumor regions. This study demonstrates that our scFv fragment antibody against ELTD1 may be useful and potential antiangiogenic treatments against GBM.

15.
J Cell Mol Med ; 24(2): 1738-1749, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31863639

RESUMO

Glioblastoma is an aggressive brain tumour found in adults, and the therapeutic approaches available have not significantly increased patient survival. Recently, we discovered that ELTD1, an angiogenic biomarker, is highly expressed in human gliomas. Polyclonal anti-ELTD1 treatments were effective in glioma pre-clinical models, however, pAb binding is potentially promiscuous. Therefore, the aim of this study was to determine the effects of an optimized monoclonal anti-ELTD1 treatment in G55 xenograft glioma models. MRI was used to assess the effects of the treatments on animal survival, tumour volumes, perfusion rates and binding specificity. Immunohistochemistry and histology were conducted to confirm and characterize microvessel density and Notch1 levels, and to locate the molecular probes. RNA-sequencing was used to analyse the effects of the mAb treatment. Our monoclonal anti-ELTD1 treatment significantly increased animal survival, reduced tumour volumes, normalized the vasculature and showed higher binding specificity within the tumour compared with both control- and polyclonal-treated mice. Notch1 positivity staining and RNA-seq results suggested that ELTD1 has the ability to interact with and interrupt Notch1 signalling. Although little is known about ELTD1, particularly about its ligand and pathways, our data suggest that our monoclonal anti-ELTD1 antibody is a promising anti-angiogenic therapeutic in glioblastomas.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Glioblastoma/tratamento farmacológico , Receptores Acoplados a Proteínas G/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto , Animais , Anticorpos Monoclonais/farmacologia , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Galinhas , Glioblastoma/patologia , Humanos , Camundongos , Microvasos/efeitos dos fármacos , Microvasos/patologia , Receptores Notch/metabolismo , Carga Tumoral/efeitos dos fármacos
16.
PLoS One ; 14(4): e0215762, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31026304

RESUMO

Traumatic Brain Injury (TBI) and persistent post-concussion syndrome (PCS) including chronic migraine (CM) are major health issues for civilians and the military. It is important to understand underlying biochemical mechanisms of these conditions, and be able to monitor them in an accurate and minimally invasive manner. This study describes the initial use of a novel serum analytical platform to help distinguish TBI patients, including those with post-traumatic headache (PTH), and to help identify phenotypes at play in these disorders. The hypothesis is that physiological responses to disease states like TBI and PTH and related bodily stresses are reflected in biomolecules in the blood in disease-specific manner. Leave one out (serum sample) cross validations (LOOCV) and sample randomizations were utilized to distinguished serum samples from the following TBI patient groups: TBI +PTSD + CM + severe depression (TBI "most affected" group) vs healthy controls, TBI "most affected" vs TBI, TBI vs controls, TBI + CM vs controls, and TBI + CM vs TBI. Inter-group discriminatory p values were ≤ 10-10, and sample group randomizations resulted in p non-significant values. Peptide/protein identifications of discriminatory mass peaks from the TBI "most affected" vs controls and from the TBI plus vs TBI minus CM groups yielded information of the cellular/molecular effects of these disorders (immune responses, amyloidosis/Alzheimer's disease/dementia, neuronal development). More specific biochemical disease effects appear to involve blood brain barrier, depression, migraine headache, autoimmunity, and autophagy pathways. This study demonstrated the ability for the first time of a novel, accurate, biomarker platform to monitor these conditions in serum, and help identify biochemical relationships leading to better understanding of these disorders and to potential therapeutic approaches.


Assuntos
Lesões Encefálicas Traumáticas/complicações , Transtornos de Enxaqueca/diagnóstico , Síndrome Pós-Concussão/diagnóstico , Veteranos , Lesões Relacionadas à Guerra/complicações , Adulto , Campanha Afegã de 2001- , Doença Crônica , Depressão/sangue , Depressão/diagnóstico , Depressão/etiologia , Diagnóstico Diferencial , Feminino , Humanos , Guerra do Iraque 2003-2011 , Masculino , Pessoa de Meia-Idade , Transtornos de Enxaqueca/sangue , Transtornos de Enxaqueca/etiologia , Síndrome Pós-Concussão/sangue , Síndrome Pós-Concussão/etiologia , Estudos Retrospectivos , Transtornos de Estresse Pós-Traumáticos/sangue , Transtornos de Estresse Pós-Traumáticos/diagnóstico , Transtornos de Estresse Pós-Traumáticos/etiologia , Estados Unidos
17.
Am J Nucl Med Mol Imaging ; 9(1): 93-109, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30911439

RESUMO

Glioblastomas (GBM) are deadly brain tumors that currently do not have long-term patient treatments available. GBM overexpress the angiogenesis factor VEGF and its receptor VEGFR2. ETLD1 (epidermal growth factor, latrophilin and seven transmembrane domain-containing protein 1), a G-protein coupled receptor (GPCR) protein, we discovered as a biomarker for high-grade gliomas, is also a novel regulator of angiogenesis. Since it was established that VEGF regulates ELTD1, we wanted to establish if VEGFR2 is also associated with ELTD1, by targeted antibody inhibition. G55 glioma-bearing mice were treated with either anti-ELTD1 or anti-VEGFR2 antibodies. With the use of MRI molecular imaging probes, we were able to detect in vivo levels of either ELTD1 (anti-ELTD1 probe) or VEGFR2 (anti-VEGFR2 probe). Protein expressions were obtained for ELTD1, VEGF or VEGFR2 via immunohistochemistry (IHC). VEGFR2 levels were significantly decreased (P < 0.05) with anti-ELTD1 antibody treatment, and ELTD1 levels were significantly decreased (P < 0.05) with anti-VEGFR2 antibody treatment, both compared to untreated tumors. IHC from mouse tumor tissues established that VEGFR2 and ELTD1 were co-localized. The mouse anti-ELTD1 antibody treatment study indicated that anti-VEGFR2 antibody treatment does not significantly increase survival, decrease tumor volumes, or alter tumor perfusion (measured as relative cerebral blood flow or rCBF). Conversely, anti-ELTD1 antibody treatment was able to significantly increase animal survival (P < 0.01), decrease tumor volumes (P < 0.05), and reduce change in rCBF (P < 0.001), when compared to untreated or IgG-treated tumor bearing mice. Anti-ELTD1 antibody therapy could be beneficial in targeting ELTD1, as well as simultaneously affecting VEGFR2, as a possible GBM treatment.

18.
J Funct Foods ; 42: 262-270, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30319713

RESUMO

Dried plum has unique anabolic effects on bone, but the responsible bioactive components have remained unclear. This study investigated components of dried plum with potential osteoprotective activity utilizing aged, osteopenic Sprague Dawley rats fed diets supplemented with a crude polyphenol extract, potassium, vitamin K or their combination. Whole body and femoral bone mineral density were restored with the polyphenol and combination treatments to a similar extent as the dried fruit. The combination treatment reversed trabecular bone loss in the spine and cortical bone in the femur mid-diaphysis in a similar manner. Biomarkers of bone resorption were reduced by the polyphenol and combination treatments. The polyphenol extract accounted for most of the anabolic effect of dried plum on bone. This study is the first to show the bioactive components in dried plum responsible for restoring bone in vivo.

19.
Urology ; 116: 230.e1-230.e7, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29545038

RESUMO

OBJECTIVE: To test in an animal model the hypothesis that recombinant human proteoglycan 4 (rhPRG4; lubricin), a highly O-glycosylated mucin-like glycoprotein, may be a novel surface-active therapeutic for treating bladder permeability with comorbid bowel permeability. Previously we showed that inducing bladder permeability in rats with dilute protamine sulfate (PS) produced colonic permeability and visceral hypersensitivity, suggesting increased bladder permeability could represent an etiologic factor in both interstitial cystitis-bladder pain syndrome and irritable bowel syndrome. METHODS: We used an animal model of catheterized ovariectomized female rats instilled intravesically with 1 mg/mL PS for 10 minutes that after 24 hours were treated with 1.2 mg/mL lubricin or with vehicle alone. After 24 hours the bladder and colon were removed and permeability assessed electrophysiologically with the Ussing chamber to measure the transepithelial electrical resistance. A second set of rats was treated identically, except permeability was assessed on day 3 and on day 5 using contrast-enhanced magnetic resonance imaging with gadolinium diethylenetriamine penta-acetic acid instilled into the bladder. RESULTS: Intravesical lubricin reversed bladder permeability induced by PS and prevented the concomitant increase in permeability induced in the bowel (organ crosstalk). The protective effect was confirmed with magnetic resonance imaging, and because individual rats could be followed over time, the impermeability of the bladder restored by rhPRG4 remained for 5 days. CONCLUSION: These data indicate that instillation of rhPRG4 into a permeable bladder can restore its normally impermeable state, and that the effect lasts for 5 days and also prevents bowel symptoms often comorbid with interstitial cystitis-bladder pain syndrome.


Assuntos
Colo/metabolismo , Cistite Intersticial/tratamento farmacológico , Síndrome do Intestino Irritável/tratamento farmacológico , Proteoglicanas/uso terapêutico , Bexiga Urinária/metabolismo , Administração Intravesical , Animais , Colo/diagnóstico por imagem , Colo/efeitos dos fármacos , Colo/patologia , Cistite Intersticial/etiologia , Cistite Intersticial/patologia , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Feminino , Humanos , Síndrome do Intestino Irritável/etiologia , Síndrome do Intestino Irritável/patologia , Imageamento por Ressonância Magnética , Permeabilidade/efeitos dos fármacos , Proteoglicanas/farmacologia , Ratos , Ratos Sprague-Dawley , Proteínas Recombinantes/farmacologia , Proteínas Recombinantes/uso terapêutico , Bexiga Urinária/diagnóstico por imagem , Bexiga Urinária/efeitos dos fármacos , Bexiga Urinária/patologia
20.
Oncotarget ; 8(42): 71833-71844, 2017 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-29069750

RESUMO

High-grade gliomas such as glioblastomas (GBM) present a deadly prognosis following diagnosis and very few effective treatment options. Here, we investigate if the small molecule AG488 can be an effective therapy against GBM with both anti-angiogenic as well as an anti-microtubule inhibiting modalities, using a human G55 glioma xenograft model in nude mice. From in vitro studies, we report that AG488 incubation reduced cell viability in G55 and HMEC-1 cells more so than TMZ treatment, and AG488 treatment also decreased cell viability in normal astrocytes, but not as much as for G55 cells (p<0.0001). In vivo investigations indicated that AG488 therapy helped reduce tumor volumes (p<0.0001), prolong survival (p<0.01), increase tumor perfusion (p<0.01), and decrease microvessel density (MVD) (p<0.05), compared to untreated mice or mice treated with non-specific IgG, in the G55 xenograft model. Additionally, AG488 did not induce apoptosis in normal mouse brain tissue. Animal survival and tumor volume changes for AG488 were comparable to TMZ or anti-VEGF therapies, however AG488 was found to be more effective in decreasing tumor-related vascularity (perfusion and MVD). AG488 is a potential novel therapy against high-grade gliomas.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA