Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Molecules ; 22(7)2017 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-28661448

RESUMO

Humans with the C5 genetic variant of butyrylcholinesterase (BChE) have 30-200% higher plasma BChE activity, low body weight, and shorter duration of action of the muscle relaxant succinylcholine. The C5 variant has an extra, slow-moving band of BChE activity on native polyacrylamide gel electrophoresis. This band is about 60 kDa larger than wild-type BChE. Umbilical cord BChE in 100% of newborn babies has a C5-like band. Our goal was to identify the unknown, 60 kDa protein in C5. Both wild-type and C5 BChE are under the genetic control of two independent loci, the BCHE gene on Chr 3q26.1 and the RAPH1 (lamellipodin) gene on Chr 2q33. Wild-type BChE tetramers are assembled around a 3 kDa polyproline peptide from lamellipodin. Western blot of boiled C5 and cord BChE showed a positive response with an antibody to the C-terminus of lamellipodin. The C-terminal exon of lamellipodin is about 60 kDa including an N-terminal polyproline. We propose that the unknown protein in C5 and cord BChE is encoded by the last exon of the RAPH1 gene. In 90% of the population, the 60 kDa fragment is shortened to 3 kDa during maturation to adulthood, leaving only 10% of adults with C5 BChE.


Assuntos
Butirilcolinesterase/química , Butirilcolinesterase/genética , Proteínas de Transporte/química , Variação Genética , Proteínas de Membrana/química , Multimerização Proteica , Sequência de Aminoácidos , Butirilcolinesterase/sangue , Sangue Fetal , Técnicas de Genotipagem , Humanos , Modelos Moleculares , Peso Molecular , Eletroforese em Gel de Poliacrilamida Nativa , Conformação Proteica
2.
Cell Biol Toxicol ; 28(4): 239-53, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22491967

RESUMO

In this study, we have compared several features of cell death triggered by classical inducers of apoptotic pathways (etoposide and tumour necrosis factor (TNF)-α) versus exogenous reactive oxygen species (ROS; hydrogen peroxide (H2O2), tert-butyl hydroperoxide (t-BHP)) or a ROS generator (paraquat). Our aim was to characterize relationships that exist between ROS, mitochondrial perturbations, Bcl-2 and caspases, depending on source and identity of ROS. First, we have found that these five inducers trigger oxidative stress, mitochondrial membrane permeabilization (MMP), cytochrome c (cyt c) release from mitochondria and cell death. In each case, cell death could be inhibited by several antioxidants, showing that it is primarily ROS dependent. Second, we have highlighted that during etoposide or TNF-α treatments, intracellular ROS level, MMP and cell death are all regulated by caspases and Bcl-2, with caspases acting early in the process. Third, we have demonstrated that H2O2-induced cell death shares many of these characteristics with etoposide and TNF-α, whereas t-BHP induces both caspase-dependent and caspase-independent cell death. Surprisingly, paraquat-induced cell death, which harbours some characteristics of apoptosis such as cyt c release and caspase-3 activation, is not modulated by Bcl-2 and caspase inhibitors, suggesting that paraquat also triggers non-apoptotic cell death signals. On the one hand, these results show that endogenous or exogenous ROS can trigger multiple cell death pathways with Bcl-2 and caspases acting differentially. On the other hand, they suggest that H2O2 could be an important mediator of etoposide and TNF-α-dependent cell death since these inducers trigger similar phenotypes.


Assuntos
Apoptose/efeitos dos fármacos , Caspases/metabolismo , Peróxido de Hidrogênio/metabolismo , Mitocôndrias/efeitos dos fármacos , Oxidantes/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Antioxidantes/farmacologia , Citocromos c/metabolismo , Etoposídeo/farmacologia , Células HeLa , Humanos , Peróxido de Hidrogênio/farmacologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/metabolismo , Paraquat/farmacologia , Permeabilidade/efeitos dos fármacos , Transporte Proteico , Espécies Reativas de Oxigênio/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , terc-Butil Hidroperóxido/farmacologia
3.
Int J Dev Biol ; 52(1): 21-31, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18033669

RESUMO

The stereotyped organization of the Drosophila compound eye depends on the elimination by apoptosis of about 25% of the inter-ommatidial pigment cell precursors (IOCs) during metamorphosis. This program of cell death is under antagonistic effects of the Notch and the EGFR pathways. In addition, uncharacterized positional cues may underlie death versus survival choices among IOCs. Our results provide new genetic evidences that cell death is regulated in a position- dependent manner in the eye. We show that mutations in Trithorax-like (Trl) and lola-like/batman specifically block IOC death during eye morphogenesis. These genes share characteristics of both Polycomb-Group and trithorax-Group genes, in that they are required for chromatin-mediated repression and activation of Hox genes. However, Trl function in triggering IOC death is independent from a function in repressing Hox gene expression during eye development. Analysis of mosaic ommatidiae containing Trl mutant cells revealed that Trl function for IOC death is required in cone cells. Strikingly, cell death suppression in Trl mutants depends on the position of IOCs. Our results further support a model whereby death of IOCs on the oblique sides of ommatidiae requires Trl-dependent reduction of a survival signal, or an increase of a death signal, emanating from cone cells. Trl does not have the same effect on horizontal IOCs whose survival seems to involve additional topological constraints.


Assuntos
Apoptose/genética , Drosophila/genética , Regulação da Expressão Gênica no Desenvolvimento , Genes de Insetos , Epitélio Pigmentado Ocular/fisiologia , Animais , Apoptose/fisiologia , Biomarcadores/metabolismo , Drosophila/fisiologia , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Receptores ErbB/genética , Receptores ErbB/metabolismo , Olho/crescimento & desenvolvimento , Olho/ultraestrutura , Morfogênese , Mutação , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Pupa/crescimento & desenvolvimento , Receptores de Peptídeos de Invertebrados/genética , Receptores de Peptídeos de Invertebrados/metabolismo , Receptores Notch/genética , Receptores Notch/metabolismo , Retina/citologia , Retina/fisiologia , Transgenes
4.
Eur J Biochem ; 271(8): 1476-87, 2004 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15066173

RESUMO

The C-terminal t peptide (40 residues) of vertebrate acetylcholinesterase (AChE) T subunits possesses a series of seven conserved aromatic residues and forms an amphiphilic alpha-helix; it allows the formation of homo-oligomers (monomers, dimers and tetramers) and heteromeric associations with the anchoring proteins, ColQ and PRiMA, which contain a proline-rich motif (PRAD). We analyzed the influence of mutations in the t peptide of Torpedo AChE(T) on oligomerization and secretion. Charged residues influenced the distribution of homo-oligomers but had little effect on the heteromeric association with Q(N), a PRAD-containing N-terminal fragment of ColQ. The formation of homo-tetramers and Q(N)-linked tetramers required a central core of four aromatic residues and a peptide segment extending to residue 31; the last nine residues (32-40) were not necessary, although the formation of disulfide bonds by cysteine C37 stabilized T(4) and T(4)-Q(N) tetramers. The last two residues of the t peptide (EL) induced a partial intracellular retention; replacement of the C-terminal CAEL tetrapeptide by KDEL did not prevent tetramerization and heteromeric association with Q(N), indicating that these associations take place in the endoplasmic reticulum. Mutations that disorganize the alpha-helical structure of the t peptide were found to enhance degradation. Co-expression with Q(N) generally increased secretion, mostly as T(4)-Q(N) complexes, but reduced it for some mutants. Thus, mutations in this small, autonomous interaction domain bring information on the features that determine oligomeric associations of AChE(T) subunits and the choice between secretion and degradation.


Assuntos
Acetilcolinesterase/química , Acetilcolinesterase/metabolismo , Acetilcolinesterase/genética , Motivos de Aminoácidos , Sequência de Aminoácidos , Substituição de Aminoácidos , Aminoácidos/química , Aminoácidos/genética , Animais , Células COS , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Subunidades Proteicas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Deleção de Sequência , Torpedo , Transfecção
5.
Eur J Biochem ; 271(1): 33-47, 2004 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-14686917

RESUMO

Acetylcholinesterase subunits of type T (AChET) possess an alternatively spliced C-terminal peptide (t peptide) which endows them with amphiphilic properties, the capacity to form various homo-oligomers and to associate, as a tetramer, with anchoring proteins containing a proline rich attachment domain (PRAD). The t peptide contains seven conserved aromatic residues. By spectroscopic analyses of the synthetic peptides covering part or all of the t peptide of Torpedo AChET, we show that the region containing the aromatic residues adopts an alpha helical structure, which is favored in the presence of lipids and detergent micelles: these residues therefore form a hydrophobic cluster in a sector of the helix. We also analyzed the formation of disulfide bonds between two different AChET subunits, and between AChET subunits and a PRAD-containing protein [the N-terminal fragment of the ColQ protein (QN)] possessing two cysteines upstream or downstream of the PRAD. This shows that, in the complex formed by four T subunits with QN (T4-QN), the t peptides are not folded on themselves as hairpins but instead are all oriented in the same direction, antiparallel to that of the PRAD. The formation of disulfide bonds between various pairs of cysteines, introduced by mutagenesis at various positions in the t peptides, indicates that this complex possesses a surprising flexibility.


Assuntos
Acetilcolinesterase/química , Acetilcolinesterase/isolamento & purificação , Acetilcolinesterase/metabolismo , Sequência de Aminoácidos , Animais , Anticorpos , Electrophorus , Cinética , Modelos Moleculares , Dados de Sequência Molecular , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/imunologia , Estrutura Secundária de Proteína
6.
Neurochem Res ; 28(3-4): 523-35, 2003 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-12675141

RESUMO

In the collagen-tailed forms of cholinesterases, each subunit of a specific triple helical collagen, ColQ, may be attached through a proline-rich domain (PRAD) situated in its N-terminal noncollagenous region, to tetramers of acetylcholinesterase (AChE) or butyrylcholinesterase (BChE). This heteromeric assembly ensures the functional anchoring of AChE in extracellulare matrices, for example, at the neuromuscular junction. In this study, we analyzed the influence of deletions in the noncollagenous C-terminal region of ColQ on its capacity to form a triple helix. We show that an 80-residue segment located downstream of the collagenous regions contains the trimerization domain, that it can form trimers without the collagenous regions, and that a pair of cysteines located at the N-boundary of this domain facilitates oligomerization, although it is not absolutely required. We further show that AChE subunits can associate with nonhelical collagen ColQ monomers, forming ColQ-associated tetramers (G4-Q), which are secreted or are anchored at the cell surface when the C-terminal domain of ColQ is replaced by a GPI-addition signal.


Assuntos
Acetilcolinesterase/química , Colágeno/química , Proteínas Musculares , Acetilcolinesterase/genética , Sequência de Aminoácidos/genética , Animais , Células COS , Colágeno/genética , Dados de Sequência Molecular , Mutação/genética , Estrutura Terciária de Proteína/fisiologia , Torpedo/genética , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA