Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
J Biol Chem ; 299(7): 104830, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37201583

RESUMO

Translationally Controlled Tumor Protein (TCTP) serves as a pro-survival factor in tumor cells, inhibiting the mitochondrial apoptosis pathway by enhancing the function of anti-apoptotic Bcl-2 family members Mcl-1 and Bcl-xL. TCTP specifically binds to Bcl-xL, preventing Bax-dependent Bcl-xL-induced cytochrome c release, and it reduces Mcl-1 turnover by inhibiting its ubiquitination, thereby decreasing Mcl-1-mediated apoptosis. TCTP harbors a BH3-like motif that forms a ß-strand buried in the globular domain of the protein. In contrast, the crystal structure of the TCTP BH3-like peptide in complex with the Bcl-2 family member Bcl-xL reveals an α-helical conformation for the BH3-like motif, suggesting significant structural changes upon complex formation. Employing biochemical and biophysical methods, including limited proteolysis, circular dichroism, NMR, and SAXS, we describe the TCTP complex with the Bcl-2 homolog Mcl-1. Our findings demonstrate that full-length TCTP binds to the BH3 binding groove of Mcl-1 via its BH3-like motif, experiencing conformational exchange at the interface on a micro- to milli-second timescale. Concurrently, the TCTP globular domain becomes destabilized, transitioning into a molten-globule state. Furthermore, we establish that the non-canonical residue D16 within the TCTP BH3-like motif reduces stability while enhancing the dynamics of the intermolecular interface. In conclusion, we detail the structural plasticity of TCTP and discuss its implications for partner interactions and future anticancer drug design strategies aimed at targeting TCTP complexes.


Assuntos
Modelos Moleculares , Proteína de Sequência 1 de Leucemia de Células Mieloides , Proteína Tumoral 1 Controlada por Tradução , Apoptose/genética , Proteínas Reguladoras de Apoptose/química , Proteínas Reguladoras de Apoptose/metabolismo , Proteína de Sequência 1 de Leucemia de Células Mieloides/química , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Ligação Proteica/genética , Humanos , Sítios de Ligação , Estrutura Quaternária de Proteína
2.
ChemMedChem ; 17(1): e202100528, 2022 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-34472703

RESUMO

TCTP protein is a pharmacological target in cancer and TCTP inhibitors such as sertraline have been evaluated in clinical trials. The direct interaction of TCTP with the drugs sertraline and thioridazine has been reported in vitro by SPR experiments to be in the ∼30-50 µM Kd range (Amson et al. Nature Med 2012), supporting a TCTP-dependent mode of action of the drugs on tumor cells. However, the molecular details of the interaction remain elusive although they are crucial to improve the efforts of on-going medicinal chemistry. In addition, TCTP can be phosphorylated by the Plk-1 kinase, which is indicative of poor prognosis in several cancers. The impact of phosphorylation on TCTP structure/dynamics and binding with therapeutical ligands remains unexplored. Here, we combined NMR, TSA, SPR, BLI and ITC techniques to probe the molecular interactions between TCTP with the drugs sertraline and thioridazine. We reveal that drug binding is much weaker than reported with an apparent ∼mM Kd and leads to protein destabilization that obscured the analysis of the published SPR data. We further demonstrate by NMR and SAXS that TCTP S46 phosphorylation does not promote tighter interaction between TCTP and sertraline. Accordingly, we question the supported model in which sertraline and thioridazine directly interact with isolated TCTP in tumor cells and discuss alternative modes of action for the drugs in light of current literature.


Assuntos
Antineoplásicos/farmacologia , Sertralina/farmacologia , Tioridazina/farmacologia , Proteína Tumoral 1 Controlada por Tradução/antagonistas & inibidores , Antineoplásicos/química , Relação Dose-Resposta a Droga , Humanos , Ligantes , Estrutura Molecular , Sertralina/química , Relação Estrutura-Atividade , Tioridazina/química , Proteína Tumoral 1 Controlada por Tradução/isolamento & purificação , Proteína Tumoral 1 Controlada por Tradução/metabolismo
3.
Mob DNA ; 12(1): 12, 2021 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-33926516

RESUMO

BACKGROUND: Transposons are mobile genetic elements that colonize genomes and drive their plasticity in all organisms. DNA transposon-encoded transposases bind to the ends of their cognate transposons and catalyze their movement. In some cases, exaptation of transposon genes has allowed novel cellular functions to emerge. The PiggyMac (Pgm) endonuclease of the ciliate Paramecium tetraurelia is a domesticated transposase from the PiggyBac family. It carries a core catalytic domain typical of PiggyBac-related transposases and a short cysteine-rich domain (CRD), flanked by N- and C-terminal extensions. During sexual processes Pgm catalyzes programmed genome rearrangements (PGR) that eliminate ~ 30% of germline DNA from the somatic genome at each generation. How Pgm recognizes its DNA cleavage sites in chromatin is unclear and the structure-function relationships of its different domains have remained elusive. RESULTS: We provide insight into Pgm structure by determining the fold adopted by its CRD, an essential domain required for PGR. Using Nuclear Magnetic Resonance, we show that the Pgm CRD binds two Zn2+ ions and forms an unusual binuclear cross-brace zinc finger, with a circularly permutated treble-clef fold flanked by two flexible arms. The Pgm CRD structure clearly differs from that of several other PiggyBac-related transposases, among which is the well-studied PB transposase from Trichoplusia ni. Instead, the arrangement of cysteines and histidines in the primary sequence of the Pgm CRD resembles that of active transposases from piggyBac-like elements found in other species and of human PiggyBac-derived domesticated transposases. We show that, unlike the PB CRD, the Pgm CRD does not bind DNA. Instead, it interacts weakly with the N-terminus of histone H3, whatever its lysine methylation state. CONCLUSIONS: The present study points to the structural diversity of the CRD among transposases from the PiggyBac family and their domesticated derivatives, and highlights the diverse interactions this domain may establish with chromatin, from sequence-specific DNA binding to contacts with histone tails. Our data suggest that the Pgm CRD fold, whose unusual arrangement of cysteines and histidines is found in all PiggyBac-related domesticated transposases from Paramecium and Tetrahymena, was already present in the ancestral active transposase that gave rise to ciliate domesticated proteins.

4.
Biophys J ; 120(10): 1869-1882, 2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-33741354

RESUMO

ErbB2 (or HER2) is a receptor tyrosine kinase overexpressed in some breast cancers and associated with poor prognosis. Treatments targeting the receptor extracellular and kinase domains have greatly improved disease outcome in the last 20 years. In parallel, the structures of these domains have been described, enabling better mechanistic understanding of the receptor function and targeted inhibition. However, the ErbB2 disordered C-terminal cytoplasmic tail (CtErbB2) remains very poorly characterized in terms of structure, dynamics, and detailed functional mechanism. Yet, it is where signal transduction is triggered via phosphorylation of tyrosine residues and carried out via interaction with adaptor proteins. Here, we report the first description, to our knowledge, of the ErbB2 disordered tail at atomic resolution using NMR, complemented by small-angle x-ray scattering. We show that although no part of CtErbB2 has any fully populated secondary or tertiary structure, it contains several transient α-helices and numerous transient polyproline II helices, populated up to 20 and 40%, respectively, and low but significant compaction. The presence of some structural elements suggests, along the lines of the results obtained for EGFR (ErbB1), that they may have a functional role in ErbB2's autoregulation processes. In addition, the transient formation of polyproline II helices is compliant with previously suggested interactions with SH3 domains. All in all, our in-depth structural study opens perspectives in the mechanistic understanding of ErbB2.


Assuntos
Neoplasias da Mama , Receptor ErbB-2 , Proteínas Adaptadoras de Transdução de Sinal , Feminino , Humanos , Fosforilação , Receptor ErbB-2/metabolismo , Transdução de Sinais , Domínios de Homologia de src
5.
ChemMedChem ; 16(11): 1788-1797, 2021 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-33665938

RESUMO

Drimane sesquiterpenoid dialdehydes are natural compounds with antiproliferative properties. Nevertheless, their mode of action has not yet been discovered. Herein, we demonstrate that various drimanes are potent inhibitors of MCL-1 and BCL-xL, two proteins of the BCL-2 family that are overexpressed in various cancers, including lymphoid malignancies. Subtle changes in their structure significantly modified their activity on the target proteins. The two most active compounds are MCL-1 selective and bind in the BH3 binding groove of the protein. Complementary studies by NMR spectroscopy and mass spectrometry analyses, but also synthesis, showed that they covalently inhibit MCL-1 though the formation of a pyrrole adduct. In addition, cytotoxic assays revealed that these two compounds show a cytotoxic selectivity for BL2, a MCL-1/BCL-xL-dependent cell line and induce apoptosis.


Assuntos
Antineoplásicos/farmacologia , Proteína de Sequência 1 de Leucemia de Células Mieloides/antagonistas & inibidores , Sesquiterpenos Policíclicos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Estrutura Molecular , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Sesquiterpenos Policíclicos/síntese química , Sesquiterpenos Policíclicos/química , Domínios Proteicos/efeitos dos fármacos , Relação Estrutura-Atividade , Proteína X Associada a bcl-2/antagonistas & inibidores , Proteína X Associada a bcl-2/metabolismo
6.
Nat Commun ; 10(1): 3967, 2019 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-31481669

RESUMO

N6-threonyl-carbamoylation of adenosine 37 of ANN-type tRNAs (t6A) is a universal modification essential for translational accuracy and efficiency. The t6A pathway uses two sequentially acting enzymes, YRDC and OSGEP, the latter being a subunit of the multiprotein KEOPS complex. We recently identified mutations in genes encoding four out of the five KEOPS subunits in children with Galloway-Mowat syndrome (GAMOS), a clinically heterogeneous autosomal recessive disease characterized by early-onset steroid-resistant nephrotic syndrome and microcephaly. Here we show that mutations in YRDC cause an extremely severe form of GAMOS whereas mutations in GON7, encoding the fifth KEOPS subunit, lead to a milder form of the disease. The crystal structure of the GON7/LAGE3/OSGEP subcomplex shows that the intrinsically disordered GON7 protein becomes partially structured upon binding to LAGE3. The structure and cellular characterization of GON7 suggest its involvement in the cellular stability and quaternary arrangement of the KEOPS complex.


Assuntos
Adenosina/análogos & derivados , Proteínas de Ligação ao GTP/genética , Hérnia Hiatal/genética , Proteínas Intrinsicamente Desordenadas/genética , Microcefalia/genética , Nefrose/genética , Proteínas Nucleares/genética , RNA de Transferência/genética , Proteínas de Ligação a RNA/genética , Adenosina/genética , Criança , Feminino , Proteínas de Ligação ao GTP/química , Proteínas de Ligação ao GTP/metabolismo , Humanos , Proteínas Intrinsicamente Desordenadas/metabolismo , Masculino , Complexos Multiproteicos/química , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Mutação , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/metabolismo
7.
Biochemistry ; 57(38): 5616-5628, 2018 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-30204426

RESUMO

Human mitoNEET (mNT) is the first identified Fe-S protein of the mammalian outer mitochondrial membrane. Recently, we demonstrated the involvement of mNT in a specific cytosolic pathway dedicated to the reactivation of oxidatively damaged cytosolic aconitase by cluster transfer. In vitro studies using apo-ferredoxin (FDX) reveal that mNT uses an Fe-based redox switch mechanism to regulate the transfer of its cluster. Using the "gold standard" cluster recipient protein, FDX, we show that this transfer is direct and that only one of the two mNT clusters is transferred when the second one is decomposed. Combining complementary biophysical and biochemical approaches, we show that pH affects both the sensitivity of the cluster to O2 and dimer stability. Around physiological cytosolic pH, the ability of mNT to transfer its cluster is tightly regulated by the pH. Finally, mNT is extremely resistant to H2O2 compared to ISCU and SufB, two other Fe-S cluster transfer proteins, which is consistent with its involvement in a repair pathway of stress-damaged Fe-S proteins. Taken together, our results suggest that the ability of mNT to transfer its cluster to recipient proteins is not only controlled by the redox state of its cluster but also tightly modulated by the pH of the cytosol. We propose that when pathophysiological conditions such as cancer and neurodegenerative diseases dysregulate cellular pH homeostasis, this pH-dependent regulation of mNT is lost, as is the regulation of cellular pathways under the control of mNT.


Assuntos
Ferredoxinas/metabolismo , Peróxido de Hidrogênio/metabolismo , Proteínas Ferro-Enxofre/metabolismo , Ferro/metabolismo , Proteínas Mitocondriais/metabolismo , Enxofre/metabolismo , Ferredoxinas/química , Humanos , Concentração de Íons de Hidrogênio , Proteínas Ferro-Enxofre/química , Proteínas Mitocondriais/química , Oxirredução , Multimerização Proteica
8.
J Mol Biol ; 430(11): 1621-1639, 2018 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-29719201

RESUMO

The translationally controlled tumor protein (TCTP) is a multifunctional protein that may interact with many other biomolecules, including itself. The experimental determinations of TCTP structure revealed a folded core domain and an intrinsically disordered region, which includes the first highly conserved TCTP signature, but whose role in the protein functions remains to be elucidated. In this work, we combined NMR experiments and MD simulations to characterize the conformational ensemble of the TCTP intrinsically disordered loop, in the presence or not of calcium ions and with or without the phosphorylation of Ser46 and Ser64. Our results show that these changes in the TCTP electrostatic conditions induce significant shifts of its conformational ensemble toward structures more or less extended in which the disordered loop is pulled away or folded against the core domain. Particularly, these conditions impact the transient contacts between the two highly conserved signatures of the protein. Moreover, both experimental and theoretical data show that the interface of the non-covalent TCTP dimerization involves its second signature which suggests that this region might be involved in protein-protein interaction. We also show that calcium hampers the formation of TCTP dimers, likely by favoring the competitive binding of the disordered loop to the dimerization interface. All together, we propose that the TCTP intrinsically disordered region is involved in remodeling the core domain surface to modulate its accessibility to its partners in response to a variety of cellular conditions.


Assuntos
Biomarcadores Tumorais/química , Biomarcadores Tumorais/metabolismo , Cálcio/metabolismo , Humanos , Modelos Moleculares , Simulação de Dinâmica Molecular , Ressonância Magnética Nuclear Biomolecular , Fosforilação , Ligação Proteica , Conformação Proteica , Dobramento de Proteína , Multimerização Proteica , Eletricidade Estática , Proteína Tumoral 1 Controlada por Tradução
9.
Nucleic Acids Res ; 46(5): 2660-2677, 2018 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-29385532

RESUMO

The piggyBac transposase (PB) is distinguished by its activity and utility in genome engineering, especially in humans where it has highly promising therapeutic potential. Little is known, however, about the structure-function relationships of the different domains of PB. Here, we demonstrate in vitro and in vivo that its C-terminal Cysteine-Rich Domain (CRD) is essential for DNA breakage, joining and transposition and that it binds to specific DNA sequences in the left and right transposon ends, and to an additional unexpectedly internal site at the left end. Using NMR, we show that the CRD adopts the specific fold of the cross-brace zinc finger protein family. We determine the interaction interfaces between the CRD and its target, the 5'-TGCGT-3'/3'-ACGCA-5' motifs found in the left, left internal and right transposon ends, and use NMR results to propose docking models for the complex, which are consistent with our site-directed mutagenesis data. Our results provide support for a model of the PB/DNA interactions in the context of the transpososome, which will be useful for the rational design of PB mutants with increased activity.


Assuntos
Proteínas de Ligação a DNA/química , Transposases/química , Sequência de Bases , DNA/química , DNA/metabolismo , Elementos de DNA Transponíveis , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Simulação de Acoplamento Molecular , Mutação , Ligação Proteica , Domínios Proteicos , Transposases/genética , Transposases/metabolismo , Zinco/química , Dedos de Zinco
10.
Biomol NMR Assign ; 12(1): 23-26, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-28905237

RESUMO

ErbB2 (or HER2) is a receptor tyrosine kinase that is involved in signaling pathways controlling cell division, motility and apoptosis. Though important in development and cell growth homeostasis, this protein, when overexpressed, participates in triggering aggressive HER2+ breast cancers. It is composed of an extracellular part and a transmembrane domain, both important for activation by dimerization, and a cytosolic tyrosine kinase, which activates its intrinsically disordered C-terminal end (CtErbB2). Little is known about this C-terminal part of 268 residues, despite its crucial role in interacting with adaptor proteins involved in signaling. Understanding its structural and dynamic characteristics could eventually lead to the design of new interaction inhibitors, and treatments complementary to those already targeting other parts of ErbB2. Here we report backbone and side-chain assignment of CtErbB2, which, together with structural predictions, confirms its intrinsically disordered nature.


Assuntos
Citosol/química , Ressonância Magnética Nuclear Biomolecular , Receptor ErbB-2/química , Sequência de Aminoácidos , Humanos
11.
Results Probl Cell Differ ; 64: 9-46, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29149402

RESUMO

The 19-24 kDa Translationally Controlled Tumor Protein (TCTP) is involved in a wide range of molecular interactions with biological and nonbiological partners of various chemical compositions such as proteins, peptides, nucleic acids, carbohydrates, or small molecules. TCTP is therefore an important and versatile binding platform. Many of these protein-protein interactions have been validated, albeit only few received an in-depth structural characterization. In this chapter, we will focus on the structural analysis of TCTP and we will review the available literature regarding its interaction network from a structural perspective.


Assuntos
Biomarcadores Tumorais/química , Biomarcadores Tumorais/metabolismo , Mapas de Interação de Proteínas , Humanos , Ligantes , Ligação Proteica , Proteína Tumoral 1 Controlada por Tradução
12.
Methods Enzymol ; 595: 83-106, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28882209

RESUMO

MitoNEET is the first identified Fe-S protein anchored to mammalian outer mitochondrial membranes with the vast majority of the protein polypeptide located in the cytosol, including its [2Fe-2S] cluster-binding domain. The coordination of the cluster is unusual and involves three cysteines and one histidine. MitoNEET is capable of transferring its redox-active Fe-S cluster to a bacterial apo-ferredoxin in vitro even under aerobic conditions, unlike other Fe-S transfer proteins such as ISCU. This specificity suggests its possible involvement in Fe-S repair after oxidative and/or nitrosative stress. Recently, we identified cytosolic aconitase/iron regulatory protein 1 (IRP1) as the first physiological protein acceptor of the mitoNEET Fe-S cluster in an Fe-S repair process. This chapter describes methods to study in vitro mitoNEET Fe-S cluster transfer/repair to a bacterial ferredoxin used as a model aporeceptor and in a more comprehensive manner to cytosolic aconitase/IRP1 after a nitrosative stress using in vitro, in cellulo, and in vivo methods.


Assuntos
Aconitato Hidratase/metabolismo , Proteína 1 Reguladora do Ferro/metabolismo , Proteínas Ferro-Enxofre/metabolismo , Ferro/metabolismo , Proteínas Mitocondriais/metabolismo , Aconitato Hidratase/química , Animais , Cisteína/metabolismo , Citosol/enzimologia , Escherichia coli , Ferredoxinas/metabolismo , Histidina/metabolismo , Humanos , Ferro/química , Proteína 1 Reguladora do Ferro/química , Proteínas Ferro-Enxofre/química , Membranas Mitocondriais/metabolismo , Estresse Nitrosativo , Oxirredução
13.
Chembiochem ; 17(19): 1851-1858, 2016 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-27514791

RESUMO

Microcin J25 (MccJ25) has emerged as an excellent model to understand the maturation of ribosomal precursor peptides into the entangled lasso fold. MccJ25 biosynthesis relies on the post-translational modification of the precursor McjA by the ATP-dependent protease McjB and the lactam synthetase McjC. Here, using NMR spectroscopy, we showed that McjA is an intrinsically disordered protein without detectable conformational preference, which emphasizes the active role of the maturation machinery on the three-dimensional folding of MccJ25. We further showed that the N-terminal region of the leader peptide is involved in interaction with both maturation enzymes and identified a predominant interaction of V43-S55 in the core McjA sequence with McjC. Moreover, we demonstrated that residues K23-Q34 in the N-terminal McjA leader peptide tend to adopt a helical conformation in the presence of membrane mimics, implying a role in directing McjA to the membrane in the vicinity of the lasso synthetase/export machinery. These data provide valuable insights into the initial molecular recognition steps in the MccJ25 maturation process.


Assuntos
Bacteriocinas/metabolismo , Peptídeos/metabolismo , Bacteriocinas/química , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Peptídeos/química , Conformação Proteica , Dobramento de Proteína
14.
J Biol Chem ; 291(14): 7583-93, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-26887944

RESUMO

Human mitoNEET (mNT) is the first identified Fe-S protein of the mammalian outer mitochondrial membrane. Recently, mNT has been implicated in cytosolic Fe-S repair of a key regulator of cellular iron homeostasis. Here, we aimed to decipher the mechanism by which mNT triggers its Fe-S repair capacity. By using tightly controlled reactions combined with complementary spectroscopic approaches, we have determined the differential roles played by both the redox state of the mNT cluster and dioxygen in cluster transfer and protein stability. We unambiguously demonstrated that only the oxidized state of the mNT cluster triggers cluster transfer to a generic acceptor protein and that dioxygen is neither required for the cluster transfer reaction nor does it affect the transfer rate. In the absence of apo-acceptors, a large fraction of the oxidized holo-mNT form is converted back to reduced holo-mNT under low oxygen tension. Reduced holo-mNT, which holds a [2Fe-2S](+)with a global protein fold similar to that of the oxidized form is, by contrast, resistant in losing its cluster or in transferring it. Our findings thus demonstrate that mNT uses an iron-based redox switch mechanism to regulate the transfer of its cluster. The oxidized state is the "active state," which reacts promptly to initiate Fe-S transfer independently of dioxygen, whereas the reduced state is a "dormant form." Finally, we propose that the redox-sensing function of mNT is a key component of the cellular adaptive response to help stress-sensitive Fe-S proteins recover from oxidative injury.


Assuntos
Proteínas Ferro-Enxofre/metabolismo , Proteínas Mitocondriais/metabolismo , Estresse Oxidativo/fisiologia , Humanos , Proteínas Ferro-Enxofre/química , Proteínas Ferro-Enxofre/genética , Proteínas Mitocondriais/química , Proteínas Mitocondriais/genética , Oxirredução
15.
ACS Chem Biol ; 10(11): 2641-9, 2015 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-26343290

RESUMO

Lasso peptides are bacterial ribosomally synthesized and post-translationally modified peptides. They have sparked increasing interest in peptide-based drug development because of their compact, interlocked structure, which offers superior stability and protein-binding capacity. Disulfide bond-containing lasso peptides are rare and exhibit highly sought-after activities. In an effort to expand the repertoire of such molecules, we heterologously expressed, in Streptomyces coelicolor, the gene cluster encoding sviceucin, a type I lasso peptide with two disulfide bridges originating from Streptomyces sviceus, which allowed it to be fully characterized. Sviceucin and its reduced forms were characterized by mass spectrometry and peptidase digestion. The three-dimensional structure of sviceucin was determined using NMR. Sviceucin displayed antimicrobial activity selectively against Gram-positive bacteria and inhibition of fsr quorum sensing in Enterococcus faecalis. This study adds sviceucin to the type I lasso peptide family as a new representative. Moreover, new clusters encoding disulfide-bond containing lasso peptides from Actinobacteria were identified by genome mining. Genetic and functional analyses revealed that the formation of disulfide bonds in sviceucin does not require a pathway-encoded thiol-disulfide oxidoreductase. Most importantly, we demonstrated the functional exchangeability of the sviceucin and microcin J25 (a non-disulfide-bridged lasso peptide) macrolactam synthetases in vitro, highlighting the potential of hybrid lasso synthetases in lasso peptide engineering.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Peptídeos/metabolismo , Streptomyces/química , Sequência de Aminoácidos , Proteínas de Bactérias/metabolismo , Cromatografia Líquida de Alta Pressão , Dissulfetos/química , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Dados de Sequência Molecular , Família Multigênica , Peptídeos/química , Alinhamento de Sequência , Streptomyces/enzimologia , Streptomyces/genética
16.
J Biol Chem ; 289(41): 28070-86, 2014 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-25012650

RESUMO

In eukaryotes, mitochondrial iron-sulfur cluster (ISC), export and cytosolic iron-sulfur cluster assembly (CIA) machineries carry out biogenesis of iron-sulfur (Fe-S) clusters, which are critical for multiple essential cellular pathways. However, little is known about their export out of mitochondria. Here we show that Fe-S assembly of mitoNEET, the first identified Fe-S protein anchored in the mitochondrial outer membrane, strictly depends on ISC machineries and not on the CIA or CIAPIN1. We identify a dedicated ISC/export pathway in which augmenter of liver regeneration, a mitochondrial Mia40-dependent protein, is specific to mitoNEET maturation. When inserted, the Fe-S cluster confers mitoNEET folding and stability in vitro and in vivo. The holo-form of mitoNEET is resistant to NO and H2O2 and is capable of repairing oxidatively damaged Fe-S of iron regulatory protein 1 (IRP1), a master regulator of cellular iron that has recently been involved in the mitochondrial iron supply. Therefore, our findings point to IRP1 as the missing link to explain the function of mitoNEET in the control of mitochondrial iron homeostasis.


Assuntos
Proteína 1 Reguladora do Ferro/química , Ferro/metabolismo , Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/química , Membranas Mitocondriais/metabolismo , Proteínas Mitocondriais/química , Animais , Escherichia coli/genética , Escherichia coli/metabolismo , Regulação da Expressão Gênica , Células HeLa , Células Hep G2 , Homeostase , Humanos , Peróxido de Hidrogênio/química , Proteína 1 Reguladora do Ferro/genética , Proteína 1 Reguladora do Ferro/metabolismo , Camundongos , Camundongos Transgênicos , Mitocôndrias/química , Proteínas de Transporte da Membrana Mitocondrial/genética , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Membranas Mitocondriais/química , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Óxido Nítrico/química , Oxirredução , Dobramento de Proteína , Estabilidade Proteica , Estrutura Terciária de Proteína , Transporte Proteico , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transdução de Sinais
17.
Org Biomol Chem ; 11(43): 7611-5, 2013 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-24105064

RESUMO

Structural investigations of peptides using NMR spectroscopy rarely include the detection of N-H···O=C and N-H···N hydrogen bonds, because the relevant heteronuclei have a low natural abundance while the small trans hydrogen bond scalar couplings reduce the sensitivity. Fast repetition NMR techniques combined with state of the art spectrometer specifications allowed the enhancement of the sensitivity for detection of hydrogen bonds at natural isotopic abundance.


Assuntos
Ressonância Magnética Nuclear Biomolecular , Peptídeos/química , Ligação de Hidrogênio , Estrutura Secundária de Proteína
18.
J Biol Inorg Chem ; 18(1): 111-22, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23135388

RESUMO

Neuroglobin (Ngb) is a globin present in the brain and retina of mammals. This hexacoordinated hemoprotein binds small diatomic molecules, albeit with lower affinity compared with other globins. Another distinctive feature of most mammalian Ngb is their ability to form an internal disulfide bridge that increases ligand affinity. As often seen for prosthetic heme b containing proteins, human Ngb exhibits heme heterogeneity with two alternative heme orientations within the heme pocket. To date, no details are available on the impact of heme orientation on the binding properties of human Ngb and its interplay with the cysteine oxidation state. In this work, we used (1)H NMR spectroscopy to probe the cyanide binding properties of different Ngb species in solution, including wild-type Ngb and the single (C120S) and triple (C46G/C55S/C120S) mutants. We demonstrate that in the disulfide-containing wild-type protein cyanide ligation is fivefold faster for one of the two heme orientations (the A isomer) compared with the other isomer, which is attributed to the lower stability of the distal His64-iron bond and reduced steric hindrance at the bottom of the cavity for heme sliding in the A conformer. We also attribute the slower cyanide reactivity in the absence of a disulfide bridge to the tighter histidine-iron bond. More generally, enhanced internal mobility in the CD loop bearing the disulfide bridge hinders access of the ligand to heme iron by stabilizing the histidine-iron bond. The functional impact of heme disorder and cysteine oxidation state on the properties of the Ngb ligand is discussed.


Assuntos
Globinas/química , Globinas/metabolismo , Heme/química , Histidina , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/metabolismo , Cianetos/metabolismo , Dissulfetos/química , Ditiotreitol/farmacologia , Globinas/genética , Humanos , Cinética , Ligantes , Simulação de Dinâmica Molecular , Mutagênese Sítio-Dirigida , Mutação , Proteínas do Tecido Nervoso/genética , Neuroglobina , Oxirredução/efeitos dos fármacos , Ligação Proteica , Estrutura Secundária de Proteína
19.
Appl Microbiol Biotechnol ; 96(5): 1253-63, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22307499

RESUMO

Gurmarin, a 35-residue polypeptide, is known to selectively inhibit responses to sweet substances in rodents without affecting responses to other basic taste stimuli, such as NaCl, HCl, and quinine. Here, we report the heterologous expression of gurmarin using the methylotrophic yeast Pichia pastoris. Gurmarin was secreted into the buffered minimal medium using the α-factor preprosequence without the EAEA spacer peptide of Saccharomyces cerevisiae and was under the control of the methanol-inducible alcohol oxidase promoter. We found that gurmarin accumulated in the yeast culture medium reaching 5 mg per liter of culture over an expression period of 4 days. To compare the production level and the signal peptide processing, the N-terminal amino acid of gurmarin was substituted by a glutamic acid residue. This construct resulted in a 6-fold increase in the level of gurmarin secretion leading to 30 mg of purified protein per liter of culture. Purified recombinant gurmarin resulting from both constructs was characterized using mass spectrometry. Circular dichroism and NMR spectroscopy revealed that recombinant gurmarin was properly folded and had secondary and tertiary structures. We also confirmed its capability to inhibit the rat heterodimeric sweet taste T1R2/T1R3 receptor by functional expression in human embryonic kidney HEK293T cells. The high level of fully active gurmarin obtained in P. pastoris makes this expression system attractive for fermentor growth and pharmacological investigations of taste receptor and gurmarin functions.


Assuntos
Pichia/genética , Proteínas de Plantas/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Dicroísmo Circular , Expressão Gênica , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Dados de Sequência Molecular , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/isolamento & purificação , Regiões Promotoras Genéticas , Conformação Proteica , Dobramento de Proteína , Sinais Direcionadores de Proteínas , Ratos , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo
20.
Biochemistry ; 48(2): 302-12, 2009 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-19108643

RESUMO

6-Hydroxymethyl-7,8-dihydropterin pyrophosphokinase (HPPK) catalyzes the transfer of pyrophosphate from ATP to 6-hydroxymethyl-7,8-dihydropterin (HP), which follows an ordered bi-bi kinetic mechanism with ATP binding to the enzyme first. HPPK undergoes dramatic conformational changes during its catalytic cycle as revealed by X-ray crystallography, and the conformational changes are essential for the enzymatic catalysis as shown by site-directed mutagenesis and biochemical and crystallographic analysis of the mutants. However, the dynamic properties of the enzyme have not been measured experimentally. Here, we report a (15)N NMR relaxation study of the dynamic properties of Escherichia coli HPPK from the apo form to the binary substrate complex with MgATP (represented by MgAMPCPP, an ATP analogue) to the Michaelis complex (ternary substrate complex) with MgATP (represented by MgAMPCPP) and HP (represented by 7,7-dimethyl-6-hydroxypterin, an HP analogue). The results show that the binding of the nucleotide to HPPK does not cause major changes in the dynamic properties of the enzyme. Whereas enzymes are often more rigid when bound to the ligand or the substrate, the internal mobility of HPPK is not reduced and is even moderately increased in the binary complex, particularly in the catalytic loops. The internal mobility of the catalytic loops is significantly quenched upon the formation of the ternary complex, but some mobility remains. The enhanced motions in the catalytic loops of the binary substrate complex may be required for the assembling of the ternary complex. On the other hand, some degrees of mobility in the catalytic loops of the ternary complex may be required for the optimal stabilization of the transition state, which may need the instantaneous adjustment and alignment of the side-chain positions of catalytic residues. Such dynamic behaviors may be characteristic of bisubstrate enzymes.


Assuntos
Difosfotransferases/metabolismo , Escherichia coli/enzimologia , Conformação Proteica , Trifosfato de Adenosina/análogos & derivados , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Catálise , Cristalografia por Raios X , Difusão , Difosfotransferases/química , Difosfotransferases/isolamento & purificação , Cinética , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Estrutura Secundária de Proteína , Rotação , Especificidade por Substrato/genética , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA