Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cartilage ; 13(2_suppl): 1478S-1489S, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34696628

RESUMO

OBJECTIVES: Osteoarthritis is a painful joint disease responsible for walking impairment. Its quantitative assessment by gait analysis in mice may be a relevant and noninvasive strategy to assess the disease severity. In this study, we aimed to determine the severity of osteoarthritis at the tissular and gait levels in unilateral and bilateral posttraumatic murine osteoarthritis. METHODS: Twenty-four C57BL/6 male mice were randomly assigned to 3 groups (n = 8/group): controls, unilateral surgery, and bilateral surgery. Posttraumatic osteoarthritis was induced unilaterally or bilaterally by destabilization of the medial meniscus. Gait analysis was performed weekly with the CatWalkTM XT system until the 16th week after surgery. After animal sacrifices, histological and micro-computed tomographic assessment was performed. RESULTS: Operated knees showed a significant increase in the histological score compared with controls (P < 0.001). Calcified anterior medial meniscal bone volume was higher on the ipsilateral side after unilateral destabilization of the medial meniscus (P < 0.001) and on both sides after bilateral intervention (P < 0.01). One week after surgery, the mice mean speed decreased significantly in both operated groups (P < 0.001 and P < 0.05). In the unilateral group, a significant increase in the contralateral hind print area appeared from week 4 to week 16. CONCLUSIONS: While bilateral destabilization of the medial meniscus induced no detectable gait modification except 1 week after surgery, unilateral model was responsible for a gait disturbance on the contralateral side. Further studies are needed to better define the place of the CatWalkTM in the evaluation of mouse models of osteoarthritis.


Assuntos
Marcha , Osteoartrite , Animais , Masculino , Meniscos Tibiais/diagnóstico por imagem , Meniscos Tibiais/patologia , Meniscos Tibiais/cirurgia , Camundongos , Camundongos Endogâmicos C57BL , Osteoartrite/diagnóstico por imagem , Osteoartrite/etiologia , Osteoartrite/patologia , Caminhada
2.
Sci Rep ; 11(1): 4907, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33649345

RESUMO

In skeletal surgical procedures, bone regeneration in irregular and hard-to-reach areas may present clinical challenges. In order to overcome the limitations of traditional autologous bone grafts and bone substitutes, an extrudable and easy-to-handle innovative partially demineralized allogenic bone graft in the form of a paste has been developed. In this study, the regenerative potential of this paste was assessed and compared to its clinically used precursor form allogenic bone particles. Compared to the particular bone graft, the bone paste allowed better attachment of human mesenchymal stromal cells and their commitment towards the osteoblastic lineage, and it induced a pro-regenerative phenotype of human monocytes/macrophages. The bone paste also supported bone healing in vivo in a guide bone regeneration model and, more interestingly, exhibited a substantial bone-forming ability when implanted in a critical-size defect model in rat calvaria. Thus, these findings indicate that this novel partially demineralized allogeneic bone paste that combines substantial bone healing properties and rapid and ease-of-use may be a promising alternative to allogeneic bone grafts for bone regeneration in several clinical contexts of oral and maxillofacial bone grafting.


Assuntos
Cimentos Ósseos/farmacologia , Matriz Óssea/transplante , Osteogênese/efeitos dos fármacos , Cicatrização , Animais , Regeneração Óssea , Substitutos Ósseos , Humanos , Masculino , Células-Tronco Mesenquimais , Monócitos , Ratos , Ratos Endogâmicos Lew
3.
Eur Spine J ; 30(2): 585-595, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32945962

RESUMO

PURPOSE: In the context of regenerative medicine strategies, based in particular on the injection of regenerative cells, biological factors, or biomaterials into the nucleus pulposus (NP), two main routes are used: the transpedicular approach (TPA) and the transannular approach (TAA). The purpose of our study was to compare the long-term consequences of the TPA and the TAA on intervertebral disc (IVD) health through a longitudinal follow-up in an ovine model. METHODS: The TPA and the TAA were performed on 12 IVDs from 3 sheep. Six discs were left untreated and used as controls. The route and injection feasibility, as well as the IVD environment integrity, were assessed by MRI (T2-weighted signal intensity), micro-CT scan, and histological analyses (Boos' scoring). The sheep were assessed at 1, 3, and 7 months. RESULTS: Both the TPA and the TAA allowed access to the NP. They both induced NP degeneration, as evidenced by a decrease in the T2wsi and an increase in the Boos' scores. The TPA led to persistent end-plate defects and herniation of NP tissue (Schmorl's node-like) after 7 months as well as the presence of osseous fragments in the NP. CONCLUSIONS: The TPA induced more severe lesions in IVDs and vertebrae compared to the TAA. The lesions induced by the TPA are reason to consider whether or not this route is optimal for studying IVD regenerative medicine approaches.


Assuntos
Degeneração do Disco Intervertebral , Disco Intervertebral , Núcleo Pulposo , Animais , Modelos Animais de Doenças , Disco Intervertebral/diagnóstico por imagem , Disco Intervertebral/cirurgia , Degeneração do Disco Intervertebral/diagnóstico por imagem , Degeneração do Disco Intervertebral/cirurgia , Imageamento por Ressonância Magnética , Ovinos , Raios X
4.
Vet Surg ; 49(3): 570-581, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31916628

RESUMO

OBJECTIVE: To determine the ability of three implants to enhance the healing of osteochondral defects: (1) a biphasic construct composed of calcium phosphate (CaP) and chitosan/cellulosic polymer, (2) a titanium-polyurethane implant, and (3) an osteochondral autograft. STUDY DESIGN: Experimental study. ANIMALS: Ten adult female sheep. METHODS: In five sheep, an 8-mm diameter osteochondral defect was created on the medial femoral condyle of a stifle and filled with a synthetic titanium-polyurethane implant. In five sheep, a similar defect was filled with an osteochondral autograft, and the donor site was filled with a biphasic construct combining CaP granules and a chitosan/cellulosic polymer. Sheep were monitored daily for lameness. Stifle radiographs and MRI were evaluated at 20 weeks, prior to animals being humanely killed. Surgical sites were evaluated with histology, microcomputed tomography, and scanning electron microscopy. RESULTS: Clinical outcomes were satisfactory regardless of the tested biomaterials. All implants appeared in place on imaging studies. Osteointegration of prosthetic implants varied between sites, with limited ingrowth of new bone into the titanium structure. Autografts and biphasic constructs were consistently well integrated in subchondral bone. All autografts except one contained a cartilage surface, and all biphasic constructs except one partially restored hyaline cartilage surface. CONCLUSION: Biphasic constructs supported hyaline cartilage and subchondral bone regeneration, although restoration of the articular cartilage was incomplete. CLINICAL IMPACT: Biphasic constructs may provide an alternative treatment for osteochondral defects, offering a less invasive approach compared with autologous grafts and eliminating the requirement for a prosthetic implant.


Assuntos
Implantes Absorvíveis , Autoenxertos , Cartilagem Articular/transplante , Ovinos/cirurgia , Animais , Regeneração Óssea , Fosfatos de Cálcio , Feminino , Fêmur/cirurgia , Joelho de Quadrúpedes/cirurgia , Transplante Autólogo , Cicatrização , Microtomografia por Raio-X
5.
Eur Spine J ; 26(8): 2072-2083, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28674787

RESUMO

PURPOSE: To investigate the suitability of the transpedicular approach (TPA) in a sheep model of IVD regenerative strategies METHODS: 24 IVD from four sheep were used. TPA and biopsies of the Nucleus pulposus (NP) were performed in 18 IVD (6 IVD control). Seven discographies were performed to assess the feasibility of injecting contrast agent. MRI, micro-CT scan, and histological analyses were performed and the accuracy of the TPA was evaluated. The effects on the vertebra and endplates were analyzed. RESULTS: 83% of our biopsies or injections were located in the NP. Osseous fragments in IVD were observed in 50%. We observed two cases (11%) of rostral endplate fracture and five cases (27%) of breaching of the cortical pedicle and encroachment into the spinal canal. Two cases of perivertebral venous embolism and two of backflow through the canal of the TPA inside the vertebra were noted. Significant damage occurred to the bone structure of the vertebra and to the rostral endplate on which the IVD had been inserted. CONCLUSIONS: TPA induces damage to the endplates, and it may lead to neurological impairment and leakage of injected materials into the systemic circulation. These adverse effects must be fully considered before proceeding with TPA for IVD regenerative strategies.


Assuntos
Regeneração Tecidual Guiada/métodos , Degeneração do Disco Intervertebral/terapia , Vértebras Lombares , Transplante de Células-Tronco Mesenquimais/métodos , Animais , Estudos de Viabilidade , Regeneração Tecidual Guiada/efeitos adversos , Injeções Espinhais/efeitos adversos , Disco Intervertebral/diagnóstico por imagem , Disco Intervertebral/patologia , Degeneração do Disco Intervertebral/diagnóstico por imagem , Degeneração do Disco Intervertebral/patologia , Vértebras Lombares/diagnóstico por imagem , Vértebras Lombares/patologia , Imageamento por Ressonância Magnética , Transplante de Células-Tronco Mesenquimais/efeitos adversos , Ovinos , Microtomografia por Raio-X
6.
Sci Rep ; 6: 33527, 2016 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-27640363

RESUMO

Polyphenols exert a large range of beneficial effects in the prevention of age-related diseases. We sought to determine whether an extract of olive and grape seed standardized according to hydroxytyrosol (HT) and procyanidins (PCy) content, exerts preventive anti-osteoathritic effects. To this aim, we evaluated whether the HT/PCy mix could (i) have in vitro anti-inflammatory and chondroprotective actions, (ii) exert anti-osteoarthritis effects in two post-traumatic animal models and (iii) retain its bioactivity after oral administration. Anti-inflammatory and chondroprotective actions of HT/PCy were tested on primary cultured rabbit chondrocytes stimulated by interleukin-1 beta (IL-1ß). The results showed that HT/PCy exerts anti-inflammatory and chondroprotective actions in vitro. The preventive effect of HT/PCy association was assessed in two animal models of post-traumatic OA in mice and rabbits. Diet supplementation with HT/PCy significantly decreased the severity of post-traumatic osteoarthritis in two complementary mice and rabbit models. The bioavailability and bioactivity was evaluated following gavage with HT/PCy in rabbits. Regular metabolites from HT/PCy extract were found in sera from rabbits following oral intake. Finally, sera from rabbits force-fed with HT/PCy conserved anti-IL-1ß effect, suggesting the bioactivity of this extract. To conclude, HT/PCy extract may be of clinical significance for the preventive treatment of osteoarthritis.


Assuntos
Extrato de Sementes de Uva/administração & dosagem , Extrato de Sementes de Uva/uso terapêutico , Interleucina-1beta/metabolismo , Olea/química , Osteoartrite/tratamento farmacológico , Osteoartrite/prevenção & controle , Ferimentos e Lesões/complicações , Administração Oral , Animais , Ligamento Cruzado Anterior/efeitos dos fármacos , Ligamento Cruzado Anterior/cirurgia , Biflavonoides/farmacologia , Biflavonoides/uso terapêutico , Catequina/farmacologia , Catequina/uso terapêutico , Ciclo-Oxigenase 2/metabolismo , Dieta , Dinoprostona/metabolismo , Modelos Animais de Doenças , Feminino , Extrato de Sementes de Uva/farmacologia , Masculino , Espectrometria de Massas , Metaloproteinase 13 da Matriz/genética , Metaloproteinase 13 da Matriz/metabolismo , Metaboloma , Camundongos Endogâmicos C57BL , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Osteoartrite/sangue , Osteoartrite/etiologia , Álcool Feniletílico/análogos & derivados , Álcool Feniletílico/farmacologia , Álcool Feniletílico/uso terapêutico , Proantocianidinas/farmacologia , Proantocianidinas/uso terapêutico , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Coelhos
7.
Stem Cells ; 34(3): 653-67, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26661057

RESUMO

Degenerative disc disease (DDD) primarily affects the central part of the intervertebral disc namely the nucleus pulposus (NP). DDD explains about 40% of low back pain and is characterized by massive cellular alterations that ultimately result in the disappearance of resident NP cells. Thus, repopulating the NP with regenerative cells is a promising therapeutic approach and remains a great challenge. The objectives of this study were to evaluate the potential of growth factor-driven protocols to commit human adipose stromal cells (hASCs) toward NP-like cell phenotype and the involvement of Smad proteins in this differentiation process. Here, we demonstrate that the transforming growth factor-ß1 and the growth differentiation factor 5 synergistically drive the nucleopulpogenic differentiation process. The commitment of the hASCs was robust and highly specific as attested by the expression of NP-related genes characteristic of young healthy human NP cells. In addition, the engineered NP-like cells secreted an abundant aggrecan and type II collagen rich extracellular matrix comparable with that of native NP. Furthermore, we demonstrate that these in vitro engineered cells survived, maintained their specialized phenotype and secretory activity after in vivo transplantation in nude mice subcutis. Finally, we provide evidence suggesting that the Smad 2/3 pathway mainly governed the acquisition of the NP cell molecular identity while the Smad1/5/8 pathway controlled the NP cell morphology. This study offers valuable insights for the development of biologically-inspired treatments for DDD by generating adapted and exhaustively characterized autologous regenerative cells.


Assuntos
Diferenciação Celular/genética , Fator 5 de Diferenciação de Crescimento/genética , Degeneração do Disco Intervertebral/terapia , Transplante de Células-Tronco Mesenquimais , Fator de Crescimento Transformador beta1/genética , Adipócitos/citologia , Adipócitos/transplante , Animais , Engenharia Celular/métodos , Matriz Extracelular , Fator 5 de Diferenciação de Crescimento/uso terapêutico , Humanos , Degeneração do Disco Intervertebral/genética , Degeneração do Disco Intervertebral/patologia , Dor Lombar , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Camundongos , Núcleo Pulposo/citologia , Núcleo Pulposo/transplante , Proteínas Smad/genética , Fator de Crescimento Transformador beta1/uso terapêutico
8.
Acta Biomater ; 24: 322-32, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26074157

RESUMO

Different possible options were investigated to combine an apatitic calcium phosphate cement with gallium ions, known as bone resorption inhibitors. Gallium can be either chemisorbed onto calcium-deficient apatite or inserted in the structure of ß-tricalcium phosphate, and addition of these gallium-doped components into the cement formulation did not significantly affect the main properties of the biomaterial, in terms of injectability and setting time. Under in vitro conditions, the amount of gallium released from the resulting cement pellets was found to be low, but increased in the presence of osteoclastic cells. When implanted in rabbit bone critical defects, a remodeling process of the gallium-doped implant started and an excellent bone interface was observed. STATEMENT OF SIGNIFICANCE: The integration of drugs and materials is a growing force in the medical industry. The incorporation of pharmaceutical products not only promises to expand the therapeutic scope of biomaterials technology but to design a new generation of true combination products whose therapeutic value stem equally from both the structural attributes of the material and the intrinsic therapy of the drug. In this context, for the first time an injectable calcium phosphate cement containing gallium was designed with properties suitable for practical application as a local delivery system, implantable by minimally invasive surgery. This important and original paper reports the design and in-depth chemical and physical characterization of this groundbreaking technology.


Assuntos
Apatitas/farmacologia , Cimentos Ósseos/farmacologia , Reabsorção Óssea/prevenção & controle , Fosfatos de Cálcio/farmacologia , Gálio/farmacologia , Animais , Apatitas/química , Cimentos Ósseos/química , Reabsorção Óssea/metabolismo , Reabsorção Óssea/patologia , Fosfatos de Cálcio/química , Linhagem Celular , Gálio/química , Camundongos , Coelhos
9.
Cell Physiol Biochem ; 35(3): 841-57, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25632940

RESUMO

BACKGROUND/AIMS: Multipotent stem/stromal cells (MSC) are considered promising for cartilage tissue engineering. However, chondrogenic differentiation of MSC can ultimately lead to the formation of hypertrophic chondrocytes responsible for the calcification of cartilage. To prevent the production of this calcified matrix at the articular site, the late hypertrophic differentiation of MSCs must be carefully controlled. Given that articular cartilage is avascular, we hypothesized that in addition to its stimulatory role in the early differentiation of chondrogenic cells, hypoxia may prevent their late hypertrophic conversion. METHODS: Early and late chondrogenic differentiation were evaluated using human adipose MSC and murine ATDC5 cells cultured under either normoxic (21%O2) or hypoxic (5%O2) conditions. To investigate the effect of hypoxia on late chondrogenic differentiation, the transcriptional activity of hypoxia-inducible factor-1alpha (HIF-1α) and HIF-2α were evaluated using the NoShift DNA-binding assay and through modulation of their activity (chemical inhibitor, RNA interference). Results : Our data demonstrate that low oxygen tension not only stimulates the early chondrogenic commitment of two complementary models of chondrogenic cells, but also inhibits their hypertrophic differentiation. Conclusion : These results suggest that hypoxia can be used as an instrumental tool to prevent the formation of a calcified matrix in MSC-based cartilage tissue engineering.


Assuntos
Cartilagem Articular/crescimento & desenvolvimento , Diferenciação Celular/genética , Células-Tronco Mesenquimais/citologia , Engenharia Tecidual , Animais , Translocador Nuclear Receptor Aril Hidrocarboneto/biossíntese , Calcinose/genética , Calcinose/patologia , Cartilagem Articular/citologia , Hipóxia Celular , Condrócitos/citologia , Condrogênese/genética , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/biossíntese , Células-Tronco Mesenquimais/metabolismo , Camundongos , Oxigênio/metabolismo
10.
PLoS One ; 8(6): e65979, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23785462

RESUMO

The formation of hydroxyapatite crystals and their insertion into collagen fibrils of the matrix are essential steps for bone mineralization. As phosphate is a main structural component of apatite crystals, its uptake by skeletal cells is critical and must be controlled by specialized membrane proteins. In mammals, in vitro studies have suggested that the high-affinity sodium-phosphate cotransporter PiT1 could play this role. In vivo, PiT1 expression was detected in hypertrophic chondrocytes of murine metatarsals, but its implication in bone physiology is not yet deciphered. As the complete deletion of PiT1 results in embryonic lethality at E12.5, we took advantage of a mouse model bearing two copies of PiT1 hypomorphic alleles to study the effect of a low expression of PiT1 on bone mineralization in vivo. In this report, we show that a 85% down-regulation of PiT1 in long bones resulted in a slight (6%) but significant reduction of femur length in young mice (15- and 30-day-old). However, despite a defect in alcian blue / alizarin red S and Von Kossa staining of hypomorphic 1-day-old mice, using X-rays micro-computed tomography, energy dispersive X-ray spectroscopy and histological staining techniques we could not detect differences between hypomorphic and wild-type mice of 15- to 300-days old. Interestingly, the expression of PiT2, the paralog of PiT1, was increased 2-fold in bone of PiT1 hypomorphic mice accounting for a normal phosphate uptake in mutant cells. Whether this may contribute to the absence of bone mineralization defects remains to be further deciphered.


Assuntos
Calcificação Fisiológica/genética , Regulação da Expressão Gênica , Proteínas Cotransportadoras de Sódio-Fosfato Tipo III/genética , Animais , Transporte Biológico , Tamanho Corporal/genética , Osso e Ossos/diagnóstico por imagem , Osso e Ossos/metabolismo , Osso e Ossos/patologia , Calcificação Fisiológica/fisiologia , Feminino , Genótipo , Masculino , Camundongos , Camundongos Transgênicos , Fenótipo , Radiografia , Proteínas Cotransportadoras de Sódio-Fosfato Tipo III/metabolismo , Espectrometria por Raios X
11.
Exp Biol Med (Maywood) ; 237(11): 1359-67, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23239447

RESUMO

This study describes an innovative experimentally induced model of intervertebral disc degeneration. This innovative approach is based on the induction of extracellular matrix disorders in the intervertebral disc (IVD) using a diode laser. For this study, 15 one-year-old and five 30-month-old New Zealand White rabbits were used. Two procedures were tested to trigger IVD degeneration: needle aspiration (reference technique) and a laser approach. The IVD degeneration process was assessed 20, 40, 60, 90 and 120 days after surgery by X-ray radiography (IVD height), magnetic resonance imaging (MRI) (T2 intensity of IVD signal) and histological analysis using modified Boos' scoring. Our data indicate that a marked IVD degeneration was found compared with sham-operated animals regardless of the procedure tested. A significant decrease in disc height on X-ray radiographs was first demonstrated. In addition, MRI disc signals were significantly reduced in both groups. Finally, a statistically significant increase in Boos' scoring was found in both laser and aspiration-induced IVD degeneration. Interestingly, IVD degeneration induced by laser treatment was more progressive compared with aspiration. Moreover, the histological results indicated that laser-induced disc degeneration was quite similar to that obtained during the natural aging process as observed in 30-month-old rabbits. Our study describes the consistency of this innovative experimentally-induced animal model of IVD degeneration. The radiological, MRI and histological data confirm its relevance. The histological examination indicates that IVD degeneration induced by laser treatment is comparable to the degenerative process observed during the onset of spontaneous IVD degeneration. This model could be a useful tool to help us validate biomaterial-assisted, cell-based, regenerative medicine strategies for the prevention and treatment of IVD degeneration.


Assuntos
Degeneração do Disco Intervertebral/diagnóstico por imagem , Degeneração do Disco Intervertebral/etiologia , Disco Intervertebral/diagnóstico por imagem , Disco Intervertebral/patologia , Animais , Modelos Animais de Doenças , Matriz Extracelular/diagnóstico por imagem , Matriz Extracelular/patologia , Feminino , Degeneração do Disco Intervertebral/patologia , Lasers , Imageamento por Ressonância Magnética/métodos , Coelhos , Cintilografia , Medicina Regenerativa/métodos
12.
Stem Cells ; 30(3): 471-80, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22131189

RESUMO

Mesenchymal stem cells (MSCs) are considered as an attractive source of cells for cartilage engineering due to their availability and capacity for expansion and multipotency. Differentiation of MSC into chondrocytes is crucial to successful cartilage regeneration and can be induced by various biological agents, including polysaccharides that participate in many biological processes through interactions with growth factors. Here, we hypothesize that growth factor-induced differentiation of MSC can be increased by chemically oversulfated marine polysaccharides. To test our hypothesis, human adipose tissue-derived MSCs (hATSCs) were cultured in pellets with transforming growth factor (TGF)-ß1-supplemented chondrogenic medium containing either the polysaccharide GY785 DR or its oversulfated isoform GY785 DRS. Chondrogenesis was monitored by the measurement of pellet volume, quantification of DNA, collagens, glycosaminoglycans (GAGs), and immunohistological staining. Our data revealed an increase in pellet volume, total collagens, and GAG production with GY785 DRS and chondrogenic medium. The enhanced chondrogenic differentiation of hATSC was further demonstrated by the increased expression of several chondrogenic markers by real-time reverse transcription-polymerase chain reaction. In addition, surface plasmon resonance analyses revealed that TGF-ß1 bound GY785 DRS with higher affinity compared to GY785 DR. In association with TGF-ß1, GY785 DRS was found to upregulate the phosphorylation of extracellular signal-regulated kinase 1/2, indicating that oversulfated polysaccharide affects the mitogen activated protein kinase signaling activity. These results demonstrate the upregulation of TGF-ß1-dependent stem cell chondrogenesis by a chemically oversulfated marine polysaccharide. This polysaccharide of marine origin is easily producible and therefore could be considered a promising additive to drive efficient and reliable MSC chondrogenesis for cartilage tissue engineering.


Assuntos
Tecido Adiposo Branco/citologia , Cartilagem/fisiologia , Condrogênese/efeitos dos fármacos , Células-Tronco Mesenquimais/efeitos dos fármacos , Polissacarídeos/farmacologia , Regeneração , Antígenos de Diferenciação/metabolismo , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Humanos , Insulina/farmacologia , Insulina/fisiologia , Células-Tronco Mesenquimais/metabolismo , Medicina Regenerativa , Transdução de Sinais , Engenharia Tecidual , Fator de Crescimento Transformador beta1/farmacologia , Fator de Crescimento Transformador beta1/fisiologia
13.
Cell Transplant ; 20(10): 1575-88, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21294960

RESUMO

Articular cartilage is an avascular tissue composed of chondrocytes, a unique cell type responsible for abundant matrix synthesis and maintenance. When damaged, it never heals spontaneously under physiological circumstances. Therefore, the delivery of mesenchymal stem cells using hydrogel has been considered for cartilage repair. This study aims at investigating the influence of in vitro chondrogenic differentiation of human adipose tissue-derived stem cells (hATSCs) on in vivo cartilage formation when associated with a cellulose-based self-setting hydrogel (Si-HPMC). hATSCs were characterized for their proliferation, surface marker expression, and multipotency. The in vitro chondrogenic potential of hATSCs cultured within Si-HPMC in control or chondrogenic medium was evaluated by measuring COL2A1, ACAN, SOX9, and COMP expression by real-time PCR. Alcian blue and type II collagen staining were also performed. To determine whether in vitro chondrogenically differentiated hATSCs may give rise to cartilage in vivo, cells differentiated as a monolayer or in pellets were finally associated with Si-HPMC and implanted subcutaneously into nude mice. Cartilage formation was assessed histologically by alcian blue and type II collagen staining. Our data demonstrate that hATSCs exhibited proliferation and self-renewal. hATSCs also expressed typical stem cell surface markers and were able to differentiate towards the adipogenic, osteogenic, and chondrogenic lineages. Real-time PCR and histological analysis indicated that Si-HPMC enabled chondrogenic differentiation of hATSCs in inductive medium, as demonstrated by increased expression of chondrogenic markers. In addition, histological analysis of implants showed that chondrogenically differentiated hATSCs (monolayers or pellets) have the ability to form cartilaginous tissue, as indicated by the presence of sulphated glycosaminoglycans and type II collagen. This study therefore suggests that an in vitro induction of hATSCs in 2D was sufficient to obtain cartilaginous tissue formation in vivo. Si-HPMC associated with autologous hATSCs could thus be a significant tool for regenerative medicine in the context of cartilage damage.


Assuntos
Tecido Adiposo/citologia , Condrogênese/efeitos dos fármacos , Hidrogel de Polietilenoglicol-Dimetacrilato/farmacologia , Células-Tronco Mesenquimais/citologia , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Citometria de Fluxo , Humanos
14.
Biomaterials ; 31(30): 7776-84, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20643480

RESUMO

Resorbable calcium phosphate (CaP) biomaterials have demonstrated considerable efficacy in bone reconstructive surgery. Furthermore, bisphosphonates (BPs) are well known anti-resorptive agents largely used in clinical treatments for osteoporosis. An injectable BP-combined CaP matrix has been developed in order to biologically reinforce osteoporotic bone by increasing the bone fraction and improving bone micro-architecture. Our previous in vitro studies have shown that CaP is effective for loading and releasing BPs at doses that can inhibit excessive bone resorption without affecting osteoblasts. In vivo studies in relevant animal models are necessary to explore the effect of our injectable BP-combined biomaterial on femur bone structure by performing three-dimensional microtomography analysis, histological studies and SEM observations. Firstly, in rat model, our BP-combined CaP matrix significantly improved the bone micro-architecture as compared to CaP alone. The implantation of the BP-loaded biomaterial within proximal femurs of osteoporotic ewes led to a significant increase in relative bone content and an improvement of its micro-architecture. These modifications were confirmed by histological and SEM observations, which revealed CaP granule resorption and new bone trabeculae formation. This approach could be considered in the future for preventing osteoporotic fractures that are preferentially localized in the proximal femur, vertebral bodies or wrist.


Assuntos
Apatitas , Conservadores da Densidade Óssea , Osso e Ossos , Cálcio/química , Difosfonatos , Osteoporose , Animais , Apatitas/química , Apatitas/farmacologia , Materiais Biocompatíveis/química , Materiais Biocompatíveis/metabolismo , Conservadores da Densidade Óssea/química , Conservadores da Densidade Óssea/farmacologia , Conservadores da Densidade Óssea/uso terapêutico , Reabsorção Óssea , Osso e Ossos/efeitos dos fármacos , Osso e Ossos/patologia , Osso e Ossos/fisiologia , Difosfonatos/química , Difosfonatos/farmacologia , Difosfonatos/uso terapêutico , Portadores de Fármacos/química , Feminino , Fêmur/patologia , Fêmur/cirurgia , Humanos , Implantes Experimentais , Teste de Materiais , Osteoporose/tratamento farmacológico , Osteoporose/patologia , Osteoporose/fisiopatologia , Ovariectomia , Ratos , Ratos Wistar , Ovinos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA