Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
J Clin Med ; 12(22)2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-38002677

RESUMO

Testicular germ cell tumors (TGCTs) represent the most frequent malignancy in young adult men and have one the highest heritability rates among all cancers. A recent multicenter case-control study identified CHEK2 as the first moderate-penetrance TGCT predisposition gene. Here, we analyzed CHEK2 in 129 TGCT cases unselected for age of onset, histology, clinical outcome, and family history of any cancer, and the frequency of identified variants was compared to findings in 27,173 ancestry-matched cancer-free men. We identified four TGCT cases harboring a P/LP variant in CHEK2 (4/129, 3.10%), which reached statistical significance (p = 0.0191; odds ratio (OR), 4.06; 95% CI, 1.59-10.54) as compared to the control group. Cases with P/LP variants in CHEK2 developed TGCT almost 6 years earlier than individuals with CHEK2 wild-type alleles (5.67 years; 29.5 vs. 35.17). No association was found between CHEK2 status and further clinical and histopathological characteristics, including histological subtypes, the occurrence of aggressive TGCT, family history of TGCT, and family history of any cancer. In addition, we found significant enrichment for the low-penetrance CHEK2 variant p.Ile157Thr (p = 0.0259; odds ratio (OR), 3.69; 95% CI, 1.45-9.55). Thus, we provide further independent evidence of CHEK2 being a moderate-penetrance TGCT predisposition gene.

2.
Am J Hum Genet ; 110(9): 1470-1481, 2023 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-37582359

RESUMO

Sclerosing skeletal dysplasias result from an imbalance between bone formation and resorption. We identified three homozygous, C-terminally truncating AXIN1 variants in seven individuals from four families affected by macrocephaly, cranial hyperostosis, and vertebral endplate sclerosis. Other frequent findings included hip dysplasia, heart malformations, variable developmental delay, and hematological anomalies. In line with AXIN1 being a central component of the ß-catenin destruction complex, analyses of primary and genome-edited cells harboring the truncating variants revealed enhanced basal canonical Wnt pathway activity. All three AXIN1-truncating variants resulted in reduced protein levels and impaired AXIN1 polymerization mediated by its C-terminal DIX domain but partially retained Wnt-inhibitory function upon overexpression. Addition of a tankyrase inhibitor attenuated Wnt overactivity in the AXIN1-mutant model systems. Our data suggest that AXIN1 coordinates the action of osteoblasts and osteoclasts and that tankyrase inhibitors can attenuate the effects of AXIN1 hypomorphic variants.


Assuntos
Luxação do Quadril , Osteosclerose , Tanquirases , Humanos , Tanquirases/genética , Tanquirases/metabolismo , Proteína Axina/genética , Proteína Axina/metabolismo , Via de Sinalização Wnt/genética , Osteosclerose/genética , beta Catenina/metabolismo
3.
Genes (Basel) ; 13(11)2022 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-36360192

RESUMO

Germline pathogenic and likely pathogenic (P/LP) variants in CHEK2 have been associated with increased prostate cancer (PrCa) risk. Our objective was to analyze their occurrence in Croatian PrCa men and to evaluate the clinical characteristics of P/LP variant carriers. Therefore, we analyzed CHEK2 in 150 PrCa patients unselected for age of onset, family history of PrCa or clinical outcome, and the frequency of identified variants was compared to findings in 442 cancer-free men, of Croatian ancestry. We identified four PrCa cases harboring a P/LP variant in CHEK2 (4/150, 2.67%), which reached a statistical significance (p = 0.004) as compared to the control group. Patients with P/LP variants in CHEK2 developed PrCa almost 9 years earlier than individuals with CHEK2 wild-type alleles (8.9 years; p = 0.0198) and had an increased risk for lymph node involvement (p = 0.0047). No association was found between CHEK2 status and further clinical characteristics, including the Gleason score, occurrence of aggressive PrCa, the tumor or metastasis stage. However, carriers of the most common P/LP CHEK2 variant, the c.1100delC, p.Thr367Metfs15*, had a significantly higher Gleason score (p = 0.034), risk for lymph node involvement (p = 0.0001), and risk for developing aggressive PrCa (p = 0.027). Thus, in a Croatian population, CHEK2 P/LP variant carriers were associated with increased risk for early onset prostate cancer, and carriers of the c.1100delC, p.Thr367Metfs15* had increased risk for aggressive PrCa.


Assuntos
Mutação em Linhagem Germinativa , Neoplasias da Próstata , Masculino , Humanos , Croácia , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Próstata/patologia , Gradação de Tumores , Quinase do Ponto de Checagem 2/genética
4.
Cancer Epidemiol Biomarkers Prev ; 31(9): 1769-1779, 2022 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-35700037

RESUMO

BACKGROUND: Testicular germ cell tumors (TGCT), histologically classified as seminomas and nonseminomas, are believed to arise from primordial gonocytes, with the maturation process blocked when they are subjected to DNA methylation reprogramming. SNPs in DNA methylation machinery and folate-dependent one-carbon metabolism genes have been postulated to influence the proper establishment of DNA methylation. METHODS: In this pathway-focused investigation, we evaluated the association between 273 selected tag SNPs from 28 DNA methylation-related genes and TGCT risk. We carried out association analysis at individual SNP and gene-based level using summary statistics from the Genome Wide Association Study meta-analysis recently conducted by the international Testicular Cancer Consortium on 10,156 TGCT cases and 179,683 controls. RESULTS: In individual SNP analyses, seven SNPs, four mapping within MTHFR, were associated with TGCT risk after correction for multiple testing (q ≤ 0.05). Queries of public databases showed that three of these SNPs were associated with MTHFR changes in enzymatic activity (rs1801133) or expression level in testis tissue (rs12121543, rs1476413). Gene-based analyses revealed MTHFR (q = 8.4 × 10-4), methyl-CpG-binding protein 2 (MECP2; q = 2 × 10-3), and ZBTB4 (q = 0.03) as the top TGCT-associated genes. Stratifying by tumor histology, four MTHFR SNPs were associated with seminoma. In gene-based analysis MTHFR was associated with risk of seminoma (q = 2.8 × 10-4), but not with nonseminomatous tumors (q = 0.22). CONCLUSIONS: Genetic variants within MTHFR, potentially having an impact on the DNA methylation pattern, are associated with TGCT risk. IMPACT: This finding suggests that TGCT pathogenesis could be associated with the folate cycle status, and this relation could be partly due to hereditary factors.


Assuntos
Neoplasias Embrionárias de Células Germinativas , Seminoma , Neoplasias Testiculares , Metilação de DNA , Ácido Fólico , Estudo de Associação Genômica Ampla , Humanos , Masculino , Neoplasias Embrionárias de Células Germinativas/genética , Polimorfismo de Nucleotídeo Único , Seminoma/genética , Seminoma/metabolismo , Seminoma/patologia , Neoplasias Testiculares/genética
5.
Cancers (Basel) ; 14(8)2022 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-35454886

RESUMO

BACKGROUND: Previous studies have shown that different alcoholic beverage types impact prostate cancer (PCa) clinical outcomes differently. However, intake patterns of specific alcoholic beverages for PCa status are understudied. The study's objective is to evaluate intake patterns of total alcohol and the three types of beverage (beer, wine, and spirits) by the PCa risk and aggressiveness status. METHOD: This is a cross-sectional study using 10,029 men (4676 non-PCa men and 5353 PCa patients) with European ancestry from the PCa consortium. Associations between PCa status and alcohol intake patterns (infrequent, light/moderate, and heavy) were tested using multinomial logistic regressions. RESULTS: Intake frequency patterns of total alcohol were similar for non-PCa men and PCa patients after adjusting for demographic and other factors. However, PCa patients were more likely to drink wine (light/moderate, OR = 1.11, p = 0.018) and spirits (light/moderate, OR = 1.14, p = 0.003; and heavy, OR = 1.34, p = 0.04) than non-PCa men. Patients with aggressive PCa drank more beer than patients with non-aggressive PCa (heavy, OR = 1.48, p = 0.013). Interestingly, heavy wine intake was inversely associated with PCa aggressiveness (OR = 0.56, p = 0.009). CONCLUSIONS: The intake patterns of some alcoholic beverage types differed by PCa status. Our findings can provide valuable information for developing custom alcohol interventions for PCa patients.

6.
J Exp Clin Cancer Res ; 41(1): 46, 2022 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-35109899

RESUMO

Prostate cancer is a hormone-driven disease and its tumor cell growth highly relies on increased androgen receptor (AR) signaling. Therefore, targeted therapy directed against androgen synthesis or AR activation is broadly used and continually improved. However, a subset of patients eventually progresses to castration-resistant disease. To date, various mechanisms of resistance have been identified including the development of AR-independent aggressive variant prostate cancer based on neuroendocrine transdifferentiation (NED). Here, we review the highly complex processes contributing to NED. Genetic, epigenetic, transcriptional aberrations and posttranscriptional modifications are highlighted and the potential interplay of the different factors is discussed. Background Aggressive variant prostate cancer (AVPC) with traits of neuroendocrine differentiation emerges in a rising number of patients in recent years. Among others, advanced therapies targeting the androgen receptor axis have been considered causative for this development. Cell growth of AVPC often occurs completely independent of the androgen receptor signal transduction pathway and cells have mostly lost the typical cellular features of prostate adenocarcinoma. This complicates both diagnosis and treatment of this very aggressive disease. We believe that a deeper understanding of the complex molecular pathological mechanisms contributing to transdifferentiation will help to improve diagnostic procedures and develop effective treatment strategies. Indeed, in recent years, many scientists have made important contributions to unravel possible causes and mechanisms in the context of neuroendocrine transdifferentiation. However, the complexity of the diverse molecular pathways has not been captured completely, yet. This narrative review comprehensively highlights the individual steps of neuroendocrine transdifferentiation and makes an important contribution in bringing together the results found so far.


Assuntos
Transdiferenciação Celular/imunologia , Neoplasias da Próstata/fisiopatologia , Humanos , Masculino
7.
Nat Commun ; 12(1): 4487, 2021 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-34301922

RESUMO

Testicular germ cell tumors (TGCT) are the most common tumor in young white men and have a high heritability. In this study, the international Testicular Cancer Consortium assemble 10,156 and 179,683 men with and without TGCT, respectively, for a genome-wide association study. This meta-analysis identifies 22 TGCT susceptibility loci, bringing the total to 78, which account for 44% of disease heritability. Men with a polygenic risk score (PRS) in the 95th percentile have a 6.8-fold increased risk of TGCT compared to men with median scores. Among men with independent TGCT risk factors such as cryptorchidism, the PRS may guide screening decisions with the goal of reducing treatment-related complications causing long-term morbidity in survivors. These findings emphasize the interconnected nature of two known pathways that promote TGCT susceptibility: male germ cell development within its somatic niche and regulation of chromosomal division and structure, and implicate an additional biological pathway, mRNA translation.


Assuntos
Predisposição Genética para Doença/genética , Estudo de Associação Genômica Ampla/métodos , Neoplasias Embrionárias de Células Germinativas/genética , Polimorfismo de Nucleotídeo Único , Neoplasias Testiculares/genética , Linhagem Celular Tumoral , Mapeamento Cromossômico , Redes Reguladoras de Genes/genética , Genótipo , Humanos , Desequilíbrio de Ligação , Masculino , Metanálise como Assunto , Neoplasias Embrionárias de Células Germinativas/metabolismo , Mapas de Interação de Proteínas/genética , Neoplasias Testiculares/metabolismo
8.
Am J Hum Genet ; 108(6): 1053-1068, 2021 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-33909990

RESUMO

Truncating variants in exons 33 and 34 of the SNF2-related CREBBP activator protein (SRCAP) gene cause the neurodevelopmental disorder (NDD) Floating-Harbor syndrome (FLHS), characterized by short stature, speech delay, and facial dysmorphism. Here, we present a cohort of 33 individuals with clinical features distinct from FLHS and truncating (mostly de novo) SRCAP variants either proximal (n = 28) or distal (n = 5) to the FLHS locus. Detailed clinical characterization of the proximal SRCAP individuals identified shared characteristics: developmental delay with or without intellectual disability, behavioral and psychiatric problems, non-specific facial features, musculoskeletal issues, and hypotonia. Because FLHS is known to be associated with a unique set of DNA methylation (DNAm) changes in blood, a DNAm signature, we investigated whether there was a distinct signature associated with our affected individuals. A machine-learning model, based on the FLHS DNAm signature, negatively classified all our tested subjects. Comparing proximal variants with typically developing controls, we identified a DNAm signature distinct from the FLHS signature. Based on the DNAm and clinical data, we refer to the condition as "non-FLHS SRCAP-related NDD." All five distal variants classified negatively using the FLHS DNAm model while two classified positively using the proximal model. This suggests divergent pathogenicity of these variants, though clinically the distal group presented with NDD, similar to the proximal SRCAP group. In summary, for SRCAP, there is a clear relationship between variant location, DNAm profile, and clinical phenotype. These results highlight the power of combined epigenetic, molecular, and clinical studies to identify and characterize genotype-epigenotype-phenotype correlations.


Assuntos
Anormalidades Múltiplas/patologia , Adenosina Trifosfatases/genética , Anormalidades Craniofaciais/patologia , Metilação de DNA , Epigênese Genética , Transtornos do Crescimento/patologia , Comunicação Interventricular/patologia , Mutação , Transtornos do Neurodesenvolvimento/patologia , Fenótipo , Anormalidades Múltiplas/genética , Estudos de Casos e Controles , Estudos de Coortes , Anormalidades Craniofaciais/genética , Feminino , Predisposição Genética para Doença , Transtornos do Crescimento/genética , Comunicação Interventricular/genética , Humanos , Recém-Nascido , Masculino , Transtornos do Neurodesenvolvimento/genética
9.
Sci Adv ; 6(49)2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33268356

RESUMO

Although somatic mutations in Histone 3.3 (H3.3) are well-studied drivers of oncogenesis, the role of germline mutations remains unreported. We analyze 46 patients bearing de novo germline mutations in histone 3 family 3A (H3F3A) or H3F3B with progressive neurologic dysfunction and congenital anomalies without malignancies. Molecular modeling of all 37 variants demonstrated clear disruptions in interactions with DNA, other histones, and histone chaperone proteins. Patient histone posttranslational modifications (PTMs) analysis revealed notably aberrant local PTM patterns distinct from the somatic lysine mutations that cause global PTM dysregulation. RNA sequencing on patient cells demonstrated up-regulated gene expression related to mitosis and cell division, and cellular assays confirmed an increased proliferative capacity. A zebrafish model showed craniofacial anomalies and a defect in Foxd3-derived glia. These data suggest that the mechanism of germline mutations are distinct from cancer-associated somatic histone mutations but may converge on control of cell proliferation.


Assuntos
Histonas , Doenças Neurodegenerativas , Animais , Fatores de Transcrição Forkhead/genética , Mutação em Linhagem Germinativa , Histonas/genética , Histonas/metabolismo , Humanos , Doenças Neurodegenerativas/genética , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/metabolismo
11.
Nat Commun ; 11(1): 4589, 2020 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-32917887

RESUMO

Mandibuloacral dysplasia syndromes are mainly due to recessive LMNA or ZMPSTE24 mutations, with cardinal nuclear morphological abnormalities and dysfunction. We report five homozygous null mutations in MTX2, encoding Metaxin-2 (MTX2), an outer mitochondrial membrane protein, in patients presenting with a severe laminopathy-like mandibuloacral dysplasia characterized by growth retardation, bone resorption, arterial calcification, renal glomerulosclerosis and severe hypertension. Loss of MTX2 in patients' primary fibroblasts leads to loss of Metaxin-1 (MTX1) and mitochondrial dysfunction, including network fragmentation and oxidative phosphorylation impairment. Furthermore, patients' fibroblasts are resistant to induced apoptosis, leading to increased cell senescence and mitophagy and reduced proliferation. Interestingly, secondary nuclear morphological defects are observed in both MTX2-mutant fibroblasts and mtx-2-depleted C. elegans. We thus report the identification of a severe premature aging syndrome revealing an unsuspected link between mitochondrial composition and function and nuclear morphology, establishing a pathophysiological link with premature aging laminopathies and likely explaining common clinical features.


Assuntos
Acro-Osteólise/metabolismo , Predisposição Genética para Doença/genética , Lipodistrofia/metabolismo , Mandíbula/anormalidades , Proteínas de Membrana/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Acro-Osteólise/diagnóstico por imagem , Acro-Osteólise/genética , Acro-Osteólise/patologia , Senilidade Prematura/genética , Senilidade Prematura/metabolismo , Animais , Apoptose , Caenorhabditis elegans , Proliferação de Células , Criança , Regulação para Baixo , Feminino , Fibroblastos/metabolismo , Fibroblastos/patologia , Regulação da Expressão Gênica , Genótipo , Homozigoto , Humanos , Lipodistrofia/diagnóstico por imagem , Lipodistrofia/genética , Lipodistrofia/patologia , Masculino , Mandíbula/diagnóstico por imagem , Proteínas de Membrana/genética , Metaloendopeptidases , Proteínas de Transporte da Membrana Mitocondrial/genética , Proteínas Mitocondriais/genética , Mutação , Fenótipo , Pele , Sequenciamento Completo do Genoma
12.
Genet Med ; 22(7): 1215-1226, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32376980

RESUMO

PURPOSE: Somatic variants in tumor necrosis factor receptor-associated factor 7 (TRAF7) cause meningioma, while germline variants have recently been identified in seven patients with developmental delay and cardiac, facial, and digital anomalies. We aimed to define the clinical and mutational spectrum associated with TRAF7 germline variants in a large series of patients, and to determine the molecular effects of the variants through transcriptomic analysis of patient fibroblasts. METHODS: We performed exome, targeted capture, and Sanger sequencing of patients with undiagnosed developmental disorders, in multiple independent diagnostic or research centers. Phenotypic and mutational comparisons were facilitated through data exchange platforms. Whole-transcriptome sequencing was performed on RNA from patient- and control-derived fibroblasts. RESULTS: We identified heterozygous missense variants in TRAF7 as the cause of a developmental delay-malformation syndrome in 45 patients. Major features include a recognizable facial gestalt (characterized in particular by blepharophimosis), short neck, pectus carinatum, digital deviations, and patent ductus arteriosus. Almost all variants occur in the WD40 repeats and most are recurrent. Several differentially expressed genes were identified in patient fibroblasts. CONCLUSION: We provide the first large-scale analysis of the clinical and mutational spectrum associated with the TRAF7 developmental syndrome, and we shed light on its molecular etiology through transcriptome studies.


Assuntos
Deficiência Intelectual , Transcriptoma , Exoma , Células Germinativas , Humanos , Deficiência Intelectual/genética , Mutação de Sentido Incorreto , Fenótipo , Transcriptoma/genética , Peptídeos e Proteínas Associados a Receptores de Fatores de Necrose Tumoral
13.
Hum Genet ; 139(4): 483-498, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32055997

RESUMO

Biallelic variants in TOR1AIP1, encoding the integral nuclear membrane protein LAP1 (lamina-associated polypeptide 1) with two functional isoforms LAP1B and LAP1C, have initially been linked to muscular dystrophies with variable cardiac and neurological impairment. Furthermore, a recurrent homozygous nonsense alteration, resulting in loss of both LAP1 isoforms, was identified in seven likely related individuals affected by multisystem anomalies with progeroid-like appearance and lethality within the 1st decade of life. Here, we have identified compound heterozygosity in TOR1AIP1 affecting both LAP1 isoforms in two unrelated individuals affected by congenital bilateral hearing loss, ventricular septal defect, bilateral cataracts, mild to moderate developmental delay, microcephaly, mandibular hypoplasia, short stature, progressive muscular atrophy, joint contractures and severe chronic heart failure, with much longer survival. Cellular characterization of primary fibroblasts of one affected individual revealed absence of both LAP1B and LAP1C, constitutively low lamin A/C levels, aberrant nuclear morphology including nuclear cytoplasmic channels, and premature senescence, comparable to findings in other progeroid forms of nuclear envelopathies. We additionally observed an abnormal activation of the extracellular signal-regulated kinase 1/2 (ERK 1/2). Ectopic expression of wild-type TOR1AIP1 mitigated these cellular phenotypes, providing further evidence for the causal role of identified genetic variants. Altogether, we thus further expand the TOR1AIP1-associated phenotype by identifying individuals with biallelic loss-of-function variants who survived beyond the 1st decade of life and reveal novel molecular consequences underlying the TOR1AIP1-associated disorders.


Assuntos
Doenças Genéticas Inatas/genética , Proteínas de Choque Térmico HSC70/genética , Mutação com Perda de Função , Membrana Nuclear/genética , Adulto , Feminino , Humanos , Masculino , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/genética , Isoformas de Proteínas
14.
Brain ; 143(1): 55-68, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31834374

RESUMO

MN1 encodes a transcriptional co-regulator without homology to other proteins, previously implicated in acute myeloid leukaemia and development of the palate. Large deletions encompassing MN1 have been reported in individuals with variable neurodevelopmental anomalies and non-specific facial features. We identified a cluster of de novo truncating mutations in MN1 in a cohort of 23 individuals with strikingly similar dysmorphic facial features, especially midface hypoplasia, and intellectual disability with severe expressive language delay. Imaging revealed an atypical form of rhombencephalosynapsis, a distinctive brain malformation characterized by partial or complete loss of the cerebellar vermis with fusion of the cerebellar hemispheres, in 8/10 individuals. Rhombencephalosynapsis has no previously known definitive genetic or environmental causes. Other frequent features included perisylvian polymicrogyria, abnormal posterior clinoid processes and persistent trigeminal artery. MN1 is encoded by only two exons. All mutations, including the recurrent variant p.Arg1295* observed in 8/21 probands, fall in the terminal exon or the extreme 3' region of exon 1, and are therefore predicted to result in escape from nonsense-mediated mRNA decay. This was confirmed in fibroblasts from three individuals. We propose that the condition described here, MN1 C-terminal truncation (MCTT) syndrome, is not due to MN1 haploinsufficiency but rather is the result of dominantly acting C-terminally truncated MN1 protein. Our data show that MN1 plays a critical role in human craniofacial and brain development, and opens the door to understanding the biological mechanisms underlying rhombencephalosynapsis.


Assuntos
Anormalidades Múltiplas/genética , Anormalidades Craniofaciais/genética , Deficiência Intelectual/genética , Transtornos do Desenvolvimento da Linguagem/genética , Malformações do Sistema Nervoso/genética , Transativadores/genética , Proteínas Supressoras de Tumor/genética , Anormalidades Múltiplas/diagnóstico por imagem , Adolescente , Artéria Basilar/anormalidades , Artéria Basilar/diagnóstico por imagem , Artérias Carótidas/anormalidades , Artérias Carótidas/diagnóstico por imagem , Vermis Cerebelar/anormalidades , Vermis Cerebelar/diagnóstico por imagem , Cerebelo/anormalidades , Cerebelo/diagnóstico por imagem , Criança , Pré-Escolar , Estudos de Coortes , Hibridização Genômica Comparativa , Anormalidades Craniofaciais/diagnóstico por imagem , Feminino , Fibroblastos/metabolismo , Humanos , Imageamento Tridimensional , Lactente , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Mutação , Malformações do Sistema Nervoso/diagnóstico por imagem , Degradação do RNAm Mediada por Códon sem Sentido , Polimicrogiria/diagnóstico por imagem , Polimicrogiria/genética , RNA-Seq , Reação em Cadeia da Polimerase em Tempo Real , Síndrome , Tomografia Computadorizada por Raios X , Sequenciamento do Exoma , Sequenciamento Completo do Genoma
15.
Nat Commun ; 10(1): 3142, 2019 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-31316063

RESUMO

The SPRTN metalloprotease is essential for DNA-protein crosslink (DPC) repair and DNA replication in vertebrate cells. Cells deficient in SPRTN protease exhibit DPC-induced replication stress and genome instability, manifesting as premature ageing and liver cancer. Here, we provide a body of evidence suggesting that SPRTN activates the ATR-CHK1 phosphorylation signalling cascade during physiological DNA replication by proteolysis-dependent eviction of CHK1 from replicative chromatin. During this process, SPRTN proteolyses the C-terminal/inhibitory part of CHK1, liberating N-terminal CHK1 kinase active fragments. Simultaneously, CHK1 full length and its N-terminal fragments phosphorylate SPRTN at the C-terminal regulatory domain, which stimulates SPRTN recruitment to chromatin to promote unperturbed DNA replication fork progression and DPC repair. Our data suggest that a SPRTN-CHK1 cross-activation loop plays a part in DNA replication and protection from DNA replication stress. Finally, our results with purified components of this pathway further support the proposed model of a SPRTN-CHK1 cross-activation loop.


Assuntos
Quinase 1 do Ponto de Checagem/fisiologia , Proteínas de Ligação a DNA/fisiologia , Modelos Genéticos , Animais , Quinase 1 do Ponto de Checagem/metabolismo , Quebras de DNA , Replicação do DNA , Proteínas de Ligação a DNA/metabolismo , Instabilidade Genômica , Fosforilação , Transdução de Sinais , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
16.
Am J Hum Genet ; 105(2): 302-316, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31256877

RESUMO

Members of a paralogous gene family in which variation in one gene is known to cause disease are eight times more likely to also be associated with human disease. Recent studies have elucidated DHX30 and DDX3X as genes for which pathogenic variant alleles are involved in neurodevelopmental disorders. We hypothesized that variants in paralogous genes encoding members of the DExD/H-box RNA helicase superfamily might also underlie developmental delay and/or intellectual disability (DD and/or ID) disease phenotypes. Here we describe 15 unrelated individuals who have DD and/or ID, central nervous system (CNS) dysfunction, vertebral anomalies, and dysmorphic features and were found to have probably damaging variants in DExD/H-box RNA helicase genes. In addition, these individuals exhibit a variety of other tissue and organ system involvement including ocular, outer ear, hearing, cardiac, and kidney tissues. Five individuals with homozygous (one), compound-heterozygous (two), or de novo (two) missense variants in DHX37 were identified by exome sequencing. We identified ten total individuals with missense variants in three other DDX/DHX paralogs: DHX16 (four individuals), DDX54 (three individuals), and DHX34 (three individuals). Most identified variants are rare, predicted to be damaging, and occur at conserved amino acid residues. Taken together, these 15 individuals implicate the DExD/H-box helicases in both dominantly and recessively inherited neurodevelopmental phenotypes and highlight the potential for more than one disease mechanism underlying these disorders.


Assuntos
RNA Helicases DEAD-box/genética , Mutação de Sentido Incorreto , Proteínas de Neoplasias/genética , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/patologia , RNA Helicases/genética , Feminino , Estudos de Associação Genética , Humanos , Lactente , Recém-Nascido , Masculino , Linhagem , Sequenciamento do Exoma
17.
Front Oncol ; 9: 420, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31192125

RESUMO

Unrecognized genome instability syndromes can potentially impede the rational treatment of cancer in rare patients. Identification of cancer patients with a hereditary condition is a compelling necessity for oncologists, giving varying hypersensitivities to various chemotherapeutic agents or radiation, depending on the underlying genetic cause. Omission of genetic testing in the setting of an overlooked hereditary syndrome may lead to unexpected and unbearable toxicity from oncological standard approaches. We present a case of a 33-year-old man with an early-onset stage IV intrahepatic cholangiocarcinoma, who experienced unusual bone marrow failure and neutropenic fever syndrome as a consequence of palliative chemotherapy containing cisplatin and gemcitabine, leading to a fatal outcome on day 25 of his first chemotherapeutic cycle. The constellation of bone marrow failure after exposure to the platinum-based agent cisplatin, the presence of an early-onset solid malignancy and the critical appraisal of further phenotypical features raised suspicion of a hereditary genome instability syndrome. Whole-exome sequencing from buccal swab DNA enabled the post mortem diagnosis of Fanconi anemia, most likely linked to the fatal outcome due to utilization of the DNA crosslinking agent cisplatin. The patient's phenotype was exceptional, as he never displayed significant hematologic abnormalities, which is the hallmark of Fanconi anemia. As such, this case stresses the importance to at least question the possibility of a hereditary basis in cases of relatively early-onset malignancy before defining an oncological treatment strategy.

18.
Am J Hum Genet ; 104(4): 749-757, 2019 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-30905398

RESUMO

Over a relatively short period of time, the clinical geneticist's "toolbox" has been expanded by machine-learning algorithms for image analysis, which can be applied to the task of syndrome identification on the basis of facial photographs, but these technologies harbor potential beyond the recognition of established phenotypes. Here, we comprehensively characterized two individuals with a hitherto unknown genetic disorder caused by the same de novo mutation in LEMD2 (c.1436C>T;p.Ser479Phe), the gene which encodes the nuclear envelope protein LEM domain-containing protein 2 (LEMD2). Despite different ages and ethnic backgrounds, both individuals share a progeria-like facial phenotype and a distinct combination of physical and neurologic anomalies, such as growth retardation; hypoplastic jaws crowded with multiple supernumerary, yet unerupted, teeth; and cerebellar intention tremor. Immunofluorescence analyses of patient fibroblasts revealed mutation-induced disturbance of nuclear architecture, recapitulating previously published data in LEMD2-deficient cell lines, and additional experiments suggested mislocalization of mutant LEMD2 protein within the nuclear lamina. Computational analysis of facial features with two different deep neural networks showed phenotypic proximity to other nuclear envelopathies. One of the algorithms, when trained to recognize syndromic similarity (rather than specific syndromes) in an unsupervised approach, clustered both individuals closely together, providing hypothesis-free hints for a common genetic etiology. We show that a recurrent de novo mutation in LEMD2 causes a nuclear envelopathy whose prognosis in adolescence is relatively good in comparison to that of classical Hutchinson-Gilford progeria syndrome, and we suggest that the application of artificial intelligence to the analysis of patient images can facilitate the discovery of new genetic disorders.


Assuntos
Proteínas de Membrana/genética , Mutação , Proteínas Nucleares/genética , Progéria/genética , Adolescente , Inteligência Artificial , Linhagem Celular Tumoral , Núcleo Celular , Criança , Pré-Escolar , Diagnóstico por Computador , Face , Fibroblastos/metabolismo , Humanos , Masculino , Programas de Rastreamento/métodos , Informática Médica , Fenótipo , Prognóstico , Síndrome
19.
JAMA Oncol ; 5(4): 514-522, 2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-30676620

RESUMO

IMPORTANCE: Approximately 50% of the risk for the development of testicular germ cell tumors (TGCTs) is estimated to be heritable, but no mendelian TGCT predisposition genes have yet been identified. It is hypothesized that inherited pathogenic DNA repair gene (DRG) alterations may drive susceptibility to TGCTs. OBJECTIVE: To systematically evaluate the enrichment of germline pathogenic variants in the mendelian cancer predisposition DRGs in patients with TGCTs vs healthy controls. DESIGN, SETTING, AND PARTICIPANTS: A case-control enrichment analysis was performed from January 2016 to May 2018 to screen for 48 DRGs in 205 unselected men with TGCT and 27 173 ancestry-matched cancer-free individuals from the Exome Aggregation Consortium cohort in the discovery stage. Significant findings were selectively replicated in independent cohorts of 448 unselected men with TGCTs and 442 population-matched controls, as well as 231 high-risk men with TGCTs and 3090 ancestry-matched controls. Statistical analysis took place from January to May 2018. MAIN OUTCOMES AND MEASURES: Gene-level enrichment analysis of germline pathogenic variants in individuals with TGCTs relative to cancer-free controls. RESULTS: Among 205 unselected men with TGCTs (mean [SD] age, 33.04 [9.67] years), 22 pathogenic germline DRG variants, one-third of which were in CHEK2 (OMIM 604373), were identified in 20 men (9.8%; 95% CI, 6.1%-14.7%). Unselected men with TGCTs were approximately 4 times more likely to carry germline loss-of-function CHEK2 variants compared with cancer-free individuals from the Exome Aggregation Consortium cohort (odds ratio [OR], 3.87; 95% CI, 1.65-8.86; nominal P = .006; q = 0.018). Similar enrichment was also seen in an independent cohort of 448 unselected Croatian men with TGCTs (mean [SD] age, 31.98 [8.11] years) vs 442 unselected Croatian men without TGCTs (at least 50 years of age at time of sample collection) (OR, >1.4; P = .03) and 231 high-risk men with TGCTs (mean [SD] age, 31.54 [9.24] years) vs 3090 men (all older than 50 years) from the Penn Medicine Biobank (OR, 6.30; 95% CI, 2.34-17.31; P = .001). The low-penetrance CHEK2 variant (p.Ile157Thr) was found to be a Croatian founder TGCT risk variant (OR, 3.93; 95% CI, 1.53-9.95; P = .002). Individuals with the pathogenic CHEK2 loss-of-function variants developed TGCTs 6 years earlier than individuals with CHEK2 wild-type alleles (5.95 years; 95% CI, 1.48-10.42; P = .009). CONCLUSIONS AND RELEVANCE: This multicenter case-control analysis of men with or without TGCTs provides evidence for CHEK2 as a novel moderate-penetrance TGCT susceptibility gene, with potential clinical utility. In addition to highlighting DNA-repair deficiency as a potential mechanism driving TGCT susceptibility, this analysis also provides new avenues to explore management strategies and biological investigations for high-risk individuals.


Assuntos
Quinase do Ponto de Checagem 2/genética , Predisposição Genética para Doença , Neoplasias Embrionárias de Células Germinativas/genética , Neoplasias Testiculares/genética , Adulto , Estudos de Casos e Controles , Mutação em Linhagem Germinativa , Humanos , Masculino , Adulto Jovem
20.
Mol Genet Genomic Med ; 6(6): 1148-1156, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30393977

RESUMO

BACKGROUND: Cerebroretinal microangiopathy with calcifications and cysts (CRMCC) is an autosomal recessive disorder caused by pathogenic variants of the conserved telomere maintenance component 1 (CTC1) gene. The CTC1 forms the telomeric capping complex, CST, which functions in telomere homeostasis and replication. METHODS: A Brazilian pedigree and an Australian pedigree were referred to the International Registry of Werner Syndrome (Seattle, WA, USA), with clinical features of accelerated aging and recurrent bone fractures. Whole exome sequencing was performed to identify the genetic causes. RESULTS: Whole exome sequencing of the Brazilian pedigree revealed compound heterozygous pathogenic variants in CTC1: a missense mutation (c.2959C>T, p.Arg987Trp) and a novel stop codon change (c.322C>T, p.Arg108*). The Australian patient carried two novel heterozygous CTC1 variants, c.2916G>T, p.Val972Gly and c.2926G>T, p.Val976Phe within the same allele. Both heterozygous variants were inherited from the unaffected father, excluding the diagnosis of CRMCC in this pedigree. Cell biological studies demonstrated accumulation of double strand break foci in lymphoblastoid cell lines derived from the patients. Increased DSB foci were extended to non-telomeric regions of the genome, in agreement with previous biochemical studies showing a preferential binding of CTC1 protein to GC-rich sequences. CONCLUSION: CTC1 pathogenic variants can present with unusual manifestations of progeria accompanied with recurrent bone fractures. Further studies are needed to elucidate the disease mechanism leading to the clinical presentation with intra-familial variations of CRMCC.


Assuntos
Fraturas Ósseas/genética , Mutação , Fenótipo , Proteínas de Ligação a Telômeros/genética , Síndrome de Werner/genética , Adulto , Linhagem Celular , Quebras de DNA de Cadeia Dupla , Feminino , Fraturas Ósseas/patologia , Sequência Rica em GC , Instabilidade Genômica , Humanos , Masculino , Pessoa de Meia-Idade , Linhagem , Ligação Proteica , Telômero/genética , Proteínas de Ligação a Telômeros/metabolismo , Síndrome de Werner/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA