Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
1.
Biomed Pharmacother ; 176: 116864, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38865847

RESUMO

BACKGROUND: DNA repair allows the survival of cancer cells. Therefore, the development of DNA repair inhibitors is a critical need for sensitizing cancers to chemoradiation. Sae2CtIP has specific functions in initiating DNA end resection, as well as coordinating cell cycle checkpoints, and it also greatly interacts with the DDR at different levels. RESULTS: In this study, we demonstrated that corylin, a potential sensitizer, causes deficiencies in DNA repair and DNA damage checkpoints in yeast cells. More specifically, corylin increases DNA damage sensitivity through the Sae2-dependent pathway and impairs the activation of Mec1-Ddc2, Rad53-p and γ-H2A. In breast cancer cells, corylin increases apoptosis and reduces proliferation following Dox treatment by inhibiting CtIP. Xenograft assays showed that treatment with corylin combined with Dox significantly reduced tumor growth in vivo. CONCLUSIONS: Our findings herein delineate the mechanisms of action of corylin in regulating DNA repair and indicate that corylin has potential long-term clinical utility as a DDR inhibitor.


Assuntos
Dano ao DNA , Reparo do DNA , Recombinação Homóloga , Humanos , Animais , Reparo do DNA/efeitos dos fármacos , Recombinação Homóloga/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto , Feminino , Camundongos Nus , Linhagem Celular Tumoral , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/efeitos dos fármacos , Doxorrubicina/farmacologia , Camundongos , Camundongos Endogâmicos BALB C , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
2.
Biochim Biophys Acta Mol Basis Dis ; 1870(4): 167099, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38428686

RESUMO

The abnormal proliferation, migration, and inflammation of vascular smooth muscle cells (VSMCs) play crucial roles in the development of neointimal hyperplasia and restenosis. Exposure to inflammatory cytokines such as platelet-derived growth factor (PDGF)-BB and tumour necrosis factor-alpha (TNF-α) induces the transformation of contractile VSMCs into abnormal synthetic VSMCs. Isoxanthohumol (IXN) has significant anti-inflammatory, antiproliferative, and antimigratory effects. This study aimed to explore the therapeutic impact and regulatory mechanism of IXN in treating neointimal hyperplasia. The present findings indicate that IXN effectively hinders the abnormal proliferation, migration, and inflammation of VSMCs triggered by PDGF or TNF-α. This inhibition is primarily achieved through the modulation of the apelin/AKT or AKT pathway, respectively. In an in vivo model, IXN effectively reduced neointimal hyperplasia in denuded femoral arteries. These results suggest that IXN holds promise as a potential and innovative therapeutic candidate for the treatment of restenosis.


Assuntos
Proteínas Proto-Oncogênicas c-akt , Fator de Necrose Tumoral alfa , Xantonas , Humanos , Hiperplasia/tratamento farmacológico , Proliferação de Células , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Apelina , Movimento Celular , Becaplermina/farmacologia , Neointima/tratamento farmacológico , Neointima/metabolismo , Inflamação
3.
Int J Mol Sci ; 24(23)2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38069259

RESUMO

Liver fibrosis is reversible when treated in its early stages and when liver inflammatory factors are inhibited. Limited studies have investigated the therapeutic effects of corylin, a flavonoid extracted from Psoralea corylifolia L. (Fabaceae), on liver fibrosis. Therefore, we evaluated the anti-inflammatory activity of corylin and investigated its efficacy and mechanism of action in ameliorating liver fibrosis. Corylin significantly inhibited inflammatory responses by inhibiting the activation of mitogen-activated protein kinase signaling pathways and the expression of interleukin (IL)-1ß, IL-6, and tumor necrosis factor-alpha in human THP-1 and mouse RAW264.7 macrophages. Furthermore, corylin inhibited the expression of growth arrest-specific gene 6 in human hepatic stellate cells (HSCs) and the activation of the downstream phosphoinositide 3-kinase/protein kinase B pathway. This inhibited the activation of HSCs and the expression of extracellular matrix proteins, including α-smooth muscle actin and type I collagen. Additionally, corylin induced caspase 9 and caspase 3 activation, which promoted apoptosis in HSCs. Moreover, in vivo experiments confirmed the regulatory effects of corylin on these proteins, and corylin alleviated the symptoms of carbon tetrachloride-induced liver fibrosis in mice. These findings revealed that corylin has anti-inflammatory activity and inhibits HSC activation; thus, it presents as a potential adjuvant in the treatment of liver fibrosis.


Assuntos
Células Estreladas do Fígado , Fosfatidilinositol 3-Quinases , Animais , Humanos , Camundongos , Anti-Inflamatórios/efeitos adversos , Tetracloreto de Carbono , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Células Estreladas do Fígado/metabolismo , Fígado/metabolismo , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais
4.
Int J Mol Sci ; 23(5)2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35269806

RESUMO

Inflammatory bowel disease (IBD) involves chronic inflammation, loss of epithelial integrity, and gastrointestinal microbiota dysbiosis, resulting in the development of a colon cancer known as colitis-associated colorectal cancer (CAC). In this study, we evaluated the effects of corylin in a mouse model of dextran sodium sulfate (DSS)-induced colitis. The results showed corylin could improved the survival rate and colon length, maintained body weight, and ameliorated the inflammatory response in the colon. Then, we further identified the possible antitumor effects after 30-day treatment of corylin on an azoxymethane (AOM)/DSS-induced CAC mouse model. Biomarkers associated with inflammation, the colon tissue barrier, macrophage polarization (CD11c, CCR7, CD163, and CD206), and microbiota dysbiosis were monitored in the AOM/DSS group versus corylin groups. Corylin downregulated pro-inflammatory cytokines (TNF-α, IFN-γ, IL-1ß, and IL-6) mRNA expression and inflammatory signaling-associated markers (TLR4, MyD88, AP-1, CD11b, and F4/80). In addition, a colon barrier experiment revealed that epithelial cell proliferation of the mucus layer (Lgr5, Cyclin D1, and Olfm4) was downregulated and tight junction proteins (claudin-1 and ZO-1) were upregulated. Furthermore, the Firmicutes/Bacteroidetes ratio changed with corylin intervention, and the microbial diversity and community richness of the AOM/DSS mice were improved by corylin. The comparative analysis of gut microbiota revealed that Bacteroidetes, Patescibacteria, Candidatus Saccharimonas, Erysipelatoclostridium, and Enterorhabdus were significantly increased but Firmicutes, Turicibacter, Romboutsia, and Blautia decreased after corylin treatment. Altogether, corylin administration showed cancer-ameliorating effects by reducing the risk of colitis-associated colon cancer via regulation of inflammation, carcinogenesis, and compositional change of gut microbiota. Therefore, corylin could be a novel, potential health-protective, natural agent against CAC.


Assuntos
Neoplasias Associadas a Colite , Colite , Microbioma Gastrointestinal , Animais , Anti-Inflamatórios/farmacologia , Azoximetano/efeitos adversos , Colite/induzido quimicamente , Colite/complicações , Colite/tratamento farmacológico , Colo/patologia , Sulfato de Dextrana/toxicidade , Modelos Animais de Doenças , Disbiose/patologia , Flavonoides , Inflamação/patologia , Camundongos , Camundongos Endogâmicos C57BL , Junções Íntimas/metabolismo , Regulação para Cima
5.
Phytother Res ; 36(5): 2116-2126, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35229911

RESUMO

The extracts from Psoralea corylifolia Linn. (P. corylifolia) seeds have been shown to display antitumor activity. To date, the prospects of this plant and its active compounds in the treatment of non-small-cell lung cancer (NSCLC) have not been thoroughly studied. In this study, we identified a novel psorachromene compound that displays selective cytotoxic effects on all NSCLC cells tested, including NSCLC cells harboring epidermal growth factor receptor (EGFR) activation mutants (H1975L858R/T790M and H1975-MS35L858R/T790M/C797S ). Psorachromene induces G1 arrest in NSCLC cells harboring wild-type EGFR but induces apoptosis in NSCLC cells harboring activating EGFR mutations. Psorachromene inhibits activated EGFR signaling and kinase activity and suppresses tumor growth of implanted H1975-MS35L858R/T790M/C797S cells in nude mice. Molecular docking analysis revealed that psorachromene could form stronger bonds with mutant EGFR than wild-type EGFR, which might account for the greater cytotoxic effects observed in NSCLC cells harboring activating EGFR mutations (H1975 and H1975-MS35) than wild-type EGFR (A549). In conclusion, it is suggested that psorachromene is an attractive agent to be further explored for its use in the treatment of NSCLC patients harboring EGFR L858R/T790M/C797S.


Assuntos
Antineoplásicos , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Receptores ErbB/genética , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Nus , Simulação de Acoplamento Molecular , Mutação , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico
6.
Int J Mol Sci ; 23(3)2022 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-35163593

RESUMO

Triple-negative breast cancer (TNBC) is a highly aggressive breast cancer with a poor prognosis. The incidence and mortality rate of TNBC are frequently found in younger women. Due to the absence of a good therapeutic strategy, effective remedies for inhibiting TNBC have been developed for improving the cure rate. Epithelial-to-mesenchymal transition (EMT) is a critical mechanism to regulate cancer cell motility and invasion. Furthermore, ectopic expression of EMT molecules correlates with the metastasis and poor prognosis of TNBC. Targeting EMT might be a strategy for the therapy and prevention of TNBC. Propolin G, an active c-prenylflavanone in Taiwanese propolis, has been shown to possess anti-cancer activity in many cancers. However, the anti-metastasis activity of propolin G on TNBC is still unclear. The present study showed that the migration and invasion activities of TNBC cells was suppressed by propolin G. Down-regulated expression of Snail and vimentin and up-regulated expression of E-cadherin were dose- and time-dependently observed in propolin G-treated MDA-MB-231 cells. Propolin G inhibited Snail and vimentin expressions via the signaling pathways associated with post-translational modification. The activation of glycogen synthase kinase 3ß (GSK-3ß) by propolin G resulted in increasing GSK-3ß interaction with Snail. Consequently, the nuclear localization and stability of Snail was disrupted resulting in promoting the degradation. Propolin G-inhibited Snail expression and the activities of migration and invasion were reversed by GSK-3ß inhibitor pretreatment. Meanwhile, the outcomes also revealed that histone deacetylase 6 (HDAC6) activity was dose-dependently suppressed by propolin G. Correspondently, the amounts of acetyl-α-tubulin, a down-stream substrate of HDAC6, were increased. Dissociation of HDAC6/Hsp90 with vimentin leading to increased vimentin acetylation and degradation was perceived in the cells with the addition of propolin G. Moreover, up-regulated expression of acetyl-α-tubulin by propolin G was attenuated by HDAC6 overexpression. On the contrary, down-regulated expression of vimentin, cell migration and invasion by propolin G were overturned by HDAC6 overexpression. Conclusively, restraint cell migration and invasion of TNBC by propolin G were activated by the expression of GSK-3ß-suppressed Snail and the interruption of HDAC6-mediated vimentin protein stability. Aiming at EMT, propolin G might be a potential candidate for TNBC therapy.


Assuntos
Cumarínicos/farmacologia , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Flavanonas/farmacologia , Glicogênio Sintase Quinase 3 beta/metabolismo , Desacetilase 6 de Histona/metabolismo , Proteínas de Neoplasias/metabolismo , Proteólise/efeitos dos fármacos , Neoplasias de Mama Triplo Negativas/metabolismo , Vimentina/metabolismo , Linhagem Celular Tumoral , Feminino , Glicogênio Sintase Quinase 3 beta/genética , Desacetilase 6 de Histona/genética , Humanos , Proteínas de Neoplasias/genética , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Vimentina/genética
7.
Mol Med Rep ; 25(2)2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34913071

RESUMO

The antioxidant capability of herbal remedies has attracted widespread attention, but their molecular mechanisms in a muscle atrophy model have not been explored. The aim of the present study was to compare the bioactivity of sucrose challenged mice following treatment with ATG­125. Here, through a combination of transcriptomic and biomedical analysis, herbal formula ATG­125, a phytochemical­rich formula, was identified as a protective factor against muscle atrophy in sucrose challenged mice. Gene ontology (GO) identified differentially expressed genes that were primarily enriched in the 'negative regulation of proteolysis', 'cellular amino acid metabolic process', 'lipoprotein particle' and 'cell cycle', all of which were associated with the ATG­125­mediated prevention of muscle atrophy, particularly with regard to mitochondrial biogenesis. In skeletal muscle, a set of mitochondrial­related genes, including angiopoietin­like 4, nicotinamide riboside kinase 2 (Nmrk2), pyruvate dehydrogenase lipoamide kinase isozyme 4, Asc­type amino acid transporter 1 and mitochondrial uncoupling protein 3 (Ucp3) were markedly upregulated following ATG­125 intervention. An increase in Nmrk2 and Ucp3 expression were noted after ATG­125 treatment, in parallel with upregulation of the 'nicotinate and nicotinamide metabolism' pathway, as determined using the Kyoto Encyclopedia of Genes and Genomes (KEGG). Furthermore, KEGG pathway analysis revealed the downregulation of 'complement and coagulation cascades', 'cholesterol metabolism', 'biosynthesis of amino acids' and 'PPAR signaling pathway', which were associated with the downregulation of serine (or cysteine) peptidase inhibitor clade A member (Serpina)3, Serpina1b, Serpina1d, Serpina1e, apolipoprotein (Apo)a1 and Apoa2, all of which were cardiovascular and diabetes­associated risk factors and were regulated by ATG­125. In addition, ATG­125 treatment resulted in downregulated mRNA expression levels of ATPase sarcoplasmic/endoplasmic reticulum Ca2+ transporting 2, troponin­I1, troponin­C1 and troponin­T1 in young adult gastrocnemius muscle compared with the sucrose group. Nuclear factor­κB­hypoxia inducible factor­1α­TGFß receptor type­II­vascular endothelial growth factor staining indicated that ATG­125 decreased sucrose­induced chronic inflammation. ATG­125 was sufficient to prevent muscle atrophy, and this protective effect may be mediated through upregulation of AKT phosphorylation, upregulating the insulin growth factor­1R­insulin receptor substrate­PI3K­AKT pathway, which in turn resulted in a forkhead box O­dependent decrease in protein degradation pathways, including regulation of atrogin1 and E3 ubiquitin­protein ligase TRIM63. Peroxisome­proliferator activated receptor γ coactivator 1α (PGC1α) was decreased in young adult mice challenged with sucrose. ATG­125 treatment significantly increased PGC1α and significantly increased UCP­1,2,3 expression levels, which suggested ATG­125 poised the mitochondria for uncoupling of respiration. This effect is consistent with the increased SIRT1 levels and may explain an increase in mitochondria biogenesis. Taken together, the present study showed that ATG­125, as an integrator of protein synthesis and degradative pathways, prevented muscle wasting.


Assuntos
Mitocôndrias/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Atrofia Muscular/tratamento farmacológico , Extratos Vegetais/administração & dosagem , Animais , Modelos Animais de Doenças , Humanos , Masculino , Camundongos , Mitocôndrias/patologia , Músculo Esquelético/citologia , Músculo Esquelético/patologia , Atrofia Muscular/induzido quimicamente , Atrofia Muscular/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Sacarose/toxicidade
8.
Biomolecules ; 11(9)2021 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-34572484

RESUMO

Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) are approved treatments for non-small-cell lung cancer (NSCLC) patients harboring activating EGFR mutations. The EGFR C797S mutation is one of the known acquired-resistance mutations to the latest third-generation TKIs. At present, there are no clear options for treating patients who acquire resistance to third-generation TKIs. The acquisition of the EGFR C797S mutation was shown to upregulate the expression of AXL, a receptor tyrosine kinase of the TAM (TYRO3-AXL-MER) family, and the suppression of AXL is effective in reducing the growth of NSCLC cells harboring EGFR C797S. As quercetin was recently shown to inhibit AXL, quercetin may be effective in treating NSCLC cells harboring the EGFR C797S mutation. In this work, the cytotoxic effects of quercetin and its ability to inhibit tumor growth were examined in TKI-resistant NSCLC cells harboring the EGFR C797S mutation. We demonstrated that quercetin exhibited potent cytotoxic effects on NSCLC cells harboring the EGFR C797S mutation by inhibiting AXL and inducing apoptosis. Quercetin inhibited the tumor growth of xenografted NSCLC cells harboring the EGFR C797S mutation and appeared to act synergistically with brigatinib to inhibit of tumor growth in vivo. In summary, herein, we revealed that quercetin is an effective inhibitor for the treatment of non-small-cell lung cancer harboring the EGFR C797S mutation.


Assuntos
Receptores ErbB/genética , Neoplasias Pulmonares/genética , Mutação/genética , Quercetina/farmacologia , Animais , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Clonais , Regulação para Baixo/efeitos dos fármacos , Humanos , Neoplasias Pulmonares/patologia , Camundongos Endogâmicos BALB C , Camundongos Nus , Compostos Organofosforados/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Pirimidinas/farmacologia , Quercetina/química , Receptores Proteína Tirosina Quinases/genética , Receptores Proteína Tirosina Quinases/metabolismo , Receptor Tirosina Quinase Axl
9.
Int J Mol Sci ; 22(18)2021 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-34575923

RESUMO

Molecules involved in DNA damage response (DDR) are often overexpressed in cancer cells, resulting in poor responses to chemotherapy and radiotherapy. Although treatment efficacy can be improved with the concomitant use of DNA repair inhibitors, the accompanying side effects can compromise the quality of life of patients. Therefore, in this study, we identified a natural compound that could inhibit DDR, using the single-strand annealing yeast-cell analysis system, and explored its mechanisms of action and potential as a chemotherapy adjuvant in hepatocellular carcinoma (HCC) cell lines using comet assay, flow cytometry, Western blotting, immunofluorescence staining, and functional analyses. We developed a mouse model to verify the in vitro findings. We found that hydroxygenkwanin (HGK) inhibited the expression of RAD51 and progression of homologous recombination, thereby suppressing the ability of the HCC cell lines to repair DNA damage and enhancing their sensitivity to doxorubicin. HGK inhibited the phosphorylation of DNA damage checkpoint proteins, leading to apoptosis in the HCC cell lines. In the mouse xenograft model, HGK enhanced the sensitivity of liver cancer cells to doxorubicin without any physiological toxicity. Thus, HGK can inhibit DDR in liver cancer cells and mouse models, making it suitable for use as a chemotherapy adjuvant.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Dano ao DNA/efeitos dos fármacos , Flavonoides/farmacologia , Animais , Apoptose/efeitos dos fármacos , Apoptose/genética , Linhagem Celular Tumoral , Reparo do DNA/efeitos dos fármacos , Modelos Animais de Doenças , Sinergismo Farmacológico , Medicamentos de Ervas Chinesas , Regulação da Expressão Gênica , Recombinação Homóloga/efeitos dos fármacos , Humanos , Camundongos , Rad51 Recombinase/genética , Rad51 Recombinase/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , Leveduras/efeitos dos fármacos , Leveduras/genética , Leveduras/metabolismo
10.
Molecules ; 26(17)2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34500594

RESUMO

Lung cancer is the most commonly diagnosed malignant cancer in the world. Non-small-cell lung cancer (NSCLC) is the major category of lung cancer. Although effective therapies have been administered, for improving the NSCLC patient's survival, the incident rate is still high. Therefore, searching for a good strategy for preventing NSCLC is urgent. Traditional Chinese medicine (TCM) are brilliant materials for cancer chemoprevention, because of their high biological safety and low cost. Bavachinin, which is an active flavanone of Proralea corylifolia L., possesses anti-inflammation, anti-angiogenesis, and anti-cancer activities. The present study's aim was to evaluate the anti-cancer activity of bavachinin on NSCLC, and its regulating molecular mechanisms. The results exhibited that a dose-dependent decrease in the cell viability and colony formation capacity of three NSCLC cell lines, by bavachinin, were through G2/M cell cycle arrest induction. Meanwhile, the expression of the G2/M cell cycle regulators, such as cyclin B, p-cdc2Y15, p-cdc2T161, and p-wee1, was suppressed. With the dramatic up-regulation of the cyclin-dependent kinase inhibitor, p21Waf1/Cip1, the expression and association of p21Waf1/Cip1 with the cyclin B/cdc2 complex was observed. Silencing the p21Waf1/Cip1 expression significantly rescued bavachinin-induced G2/M cell accumulation. Furthermore, the expression of p21Waf1/Cip1 mRNA was up-regulated in bavachinin-treated NSCLC cells. In addition, MAPK and AKT signaling were activated in bavachinin-added NSCLC cells. Interestingly, bavachinin-induced p21Waf1/Cip1 expression was repressed after restraint p38 MAPK activation. The inhibition of p38 MAPK activation reversed bavachinin-induced p21Waf1/Cip1 mRNA expression and G2/M cell cycle arrest. Collectively, bavachinin-induced G2/M cell cycle arrest was through the p38 MAPK-mediated p21Waf1/Cip1-dependent signaling pathway in the NSCLC cells.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Flavonoides/farmacologia , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Neoplasias Pulmonares/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Células A549 , Apoptose/efeitos dos fármacos , Carcinoma Pulmonar de Células não Pequenas/genética , Pontos de Checagem do Ciclo Celular/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ciclina B1 , Inibidor de Quinase Dependente de Ciclina p21/genética , Pontos de Checagem da Fase G2 do Ciclo Celular/genética , Humanos , Neoplasias Pulmonares/genética , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/genética , Transdução de Sinais/genética , Proteínas Quinases p38 Ativadas por Mitógeno/genética
11.
Pharmacol Res ; 164: 105291, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33253817

RESUMO

Brown adipose tissue (BAT) activation or beige adipocytes in white adipocytes (WAT) (browning) is a novel strategy against obesity. Corylin, a flavonoid compound extract from Psoralea corylifolia L., has been shown to exert anti-inflammatory, anticancer, and anti-atherosclerotic effects and ameliorate hyperlipidemia and insulin resistance. However, the therapeutic effect of corylin on obesity remains unknown. The objective of this study was to evaluate the effect of corylin on browning or obesity. Here, we report that corylin induced browning by elevating the expression levels of beige- or browning-specific marker genes, including cited1, hoxc9, pgc1α, prdm16, and ucp1, in 3T3-L1 adipocytes, WAT and BAT. Moreover, corylin also strikingly reduced body weight and fat accumulation and increased insulin sensitivity, mitochondrial biogenesis, and ß-oxidation in HFD- and DIO-treated mice. The browning and lipolysis effects of corylin were abolished by sirtuin 1 (SIRT1) inhibitor (EX527) and ß3-adrenergic receptor (ß3-AR) antagonist (L-748,337) treatment. The possible molecular mechanism of corylin on the browning and lipolysis of adipocytes is through SIRT1- or ß3-AR-dependent pathways. The study suggested that corylin exerts anti-obesity effects through the browning of white adipocytes, activating of BAT and promoting of lipid metabolism. Therefore, corylin may be a helpful therapeutic candidate for treating obesity.


Assuntos
Fármacos Antiobesidade/uso terapêutico , Flavonoides/uso terapêutico , Obesidade/tratamento farmacológico , Receptores Adrenérgicos beta 3/metabolismo , Sirtuína 1/metabolismo , Células 3T3-L1 , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Tecido Adiposo Marrom/efeitos dos fármacos , Tecido Adiposo Branco/efeitos dos fármacos , Animais , Fármacos Antiobesidade/farmacologia , Dieta Hiperlipídica , Flavonoides/farmacologia , Resistência à Insulina , Lipólise/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/metabolismo
12.
J Formos Med Assoc ; 120(9): 1695-1705, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33342707

RESUMO

BACKGROUND/PURPOSE: Palbociclib is an FDA-approved cyclin-dependent kinase (CDK) 4/6 inhibitor that has been clinically proven to be effective in breast cancer. However, its use in oral cancer is not well researched. In this study, we investigated the inhibitory activity of palbociclib against oral squamous cell carcinoma (OSCC) cells and explored the mechanism of inhibition. METHODS: The effects of palbociclib on the cytotoxicity of OSCC cells were determined by MTT and colony formation assays. ß-Galactosidase staining and cell-cycle analysis were used to determine palbociclib-induced cellular senescence and apoptosis of OSCC cells. Wound healing and transwell assays were performed to assess the effects of palbociclib treatment on migration and invasion ability of OSCC cells. Whole transcriptome sequencing was conducted to show the relationship between DNA damage repair of OSCC cells and palbociclib treatment. Palbociclib-induced DNA damage and repair capacity of OSCC cells were confirmed by comet assay and immunofluorescence confocal microscopy. Western blotting was used to verify the palbociclib-mediated changes in the CDK/pRB/c-Myc/CDC25A pathway. Finally, in vitro findings were tested in a mouse xenograft model. RESULTS: Our results showed that palbociclib can significantly inhibit the growth, migration, and invasive ability of OSCC cells and can accelerate cellular senescence and apoptosis. We found that palbociclib induced DNA damage and p21 expression through the p53-independent pathway, thereby downregulating c-Myc and CDC25A expression to inhibit cell cycle progression. In addition, palbociclib downregulated RAD51 expression to inhibit DNA damage repair ability of OSCC cell. CONCLUSION: Palbociclib was found to have anti-oral squamous cell carcinoma activity and to simultaneously induce DNA damage and inhibit its repair, and to accelerated cellular senescence and apoptosis.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Animais , Apoptose , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/genética , Linhagem Celular Tumoral , Proliferação de Células , Senescência Celular , Dano ao DNA , Reparo do DNA , Camundongos , Neoplasias Bucais/tratamento farmacológico , Neoplasias Bucais/genética , Piperazinas , Piridinas , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética
13.
Oxid Med Cell Longev ; 2020: 1080168, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33343802

RESUMO

Heme oxygenase-1 (HO-1) has been shown to exert as an antioxidant and anti-inflammatory enzyme in cardiovascular inflammatory diseases. Flavonoids have been demonstrated to display anti-inflammatory and antioxidant effects through the induction of HO-1. 5,8-Dihydroxy-4',7-dimethoxyflavone (DDF), one of the flavonoid compounds, is isolated from Reevesia formosana. Whether DDF induced HO-1 expression on human cardiac fibroblasts (HCFs) remained unknown. Here, we found that DDF time- and concentration-dependently induced HO-1 protein and mRNA expression, which was attenuated by pretreatment with reactive oxygen species (ROS) scavenger N-acetyl cysteine (NAC) in HCFs. DDF-enhanced ROS generation was attenuated by NAC, but not by either diphenyleneiodonium chloride (DPI, Nox inhibitor) or MitoTempol (mitochondrial ROS scavenger). Interestingly, pretreatment with glutathione (GSH) inhibited DDF-induced HO-1 expression. The ratio of GSH/GSSG was time-dependently decreased in DDF-treated HCFs. DDF-induced HO-1 expression was attenuated by an inhibitor of p38 MAPK (p38i VIII) or siRNA, but not by MEK1/2 (PD98059) or JNK1/2 (SP600125). DDF-stimulated p38 MAPK phosphorylation was inhibited by GSH or p38i VIII. Moreover, DDF-induced HO-1 expression was mediated through Nrf2 phosphorylation and translocation into the nucleus which was attenuated by NAC or p38 siRNA. DDF also stimulated antioxidant response element (ARE) promoter activity which was inhibited by NAC, GSH, or p38i VIII. Interaction between Nrf2 and the ARE-binding sites on the HO-1 promoter was revealed by chromatin immunoprecipitation assay, which was attenuated by NAC, GSH, or p38i VIII. We further evaluated the functional effect of HO-1 expression on the thrombin-induced fibrotic responses. Our result indicated that the induction of HO-1 by DDF can attenuate the thrombin-induced connective tissue growth factor expression. These results suggested that DDF-induced HO-1 expression is, at least, mediated through the activation of the ROS-dependent p38 MAPK/Nrf2 signaling pathway in HCFs. Thus, the upregulation of HO-1 by DDF could be a candidate for the treatment of heart fibrosis.


Assuntos
Fator de Crescimento do Tecido Conjuntivo/biossíntese , Fibroblastos/metabolismo , Flavonas/farmacologia , Heme Oxigenase-1/biossíntese , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Miocárdio/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Trombina/farmacologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Linhagem Celular , Fator de Crescimento do Tecido Conjuntivo/genética , Indução Enzimática/efeitos dos fármacos , Heme Oxigenase-1/genética , Humanos , Fator 2 Relacionado a NF-E2/genética , Proteínas Quinases p38 Ativadas por Mitógeno/genética
14.
Front Oncol ; 10: 1319, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32850418

RESUMO

Magnolia officinalis is widely used in Southeast Asian countries for the treatment of fever, headache, diarrhea, and stroke. Magnolol is a phenolic compound extracted from M. officinalis, with proven antibacterial, antioxidant, anti-inflammatory, and anticancer activities. In this study, we modified magnolol to synthesize a methoxylated derivative, 2-O-methylmagnolol (MM1), and investigated the use of MM1, and magnolol in the treatment of liver cancer. We found that both magnolol and MM1 exhibited inhibitory effects on the growth, migration, and invasion of hepatocellular carcinoma (HCC) cell lines and halted the cell cycle at the G1 phase. MM1 also demonstrated a substantially better tumor-suppressive effect than magnolol. Further analysis suggested that by inhibiting class I histone deacetylase expression in HCC cell lines, magnolol and MM1 induced p21 expression and p53 activation, thereby causing cell cycle arrest and inhibiting HCC cell growth, migration, and invasion. Subsequently, we verified the significant tumor-suppressive effects of magnolol and MM1 in an animal model. Collectively, these findings demonstrate the anti-HCC activities of magnolol and MM1 and their potential for clinical use.

15.
Front Oncol ; 10: 216, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32158695

RESUMO

Abnormal histone deacetylase (HDAC) expression is closely related to cancer development and progression. Many HDAC inhibitors have been widely used in cancer treatment; however, severe side effects often limit their clinical application. In this study, we attempted to identify natural compounds with HDAC inhibitory activity and low physiological toxicity and explored their feasibility and mechanisms of action in liver cancer treatment. A yeast screening system was used to identify natural compounds with HDAC inhibitory activity. Further, western blotting was used to verify inhibitory effects on HDAC in human liver cancer cell lines. Cell functional analysis was used to explore the effects and mechanisms and the in vitro results were verified in BALB/c nude mice. We found that hydroxygenkwanin (HGK), an extract from Daphne genkwa, inhibited class I HDAC expression, and thereby induced expression of tumor suppressor p21 and promoted acetylation and activation of p53 and p65. This resulted in the inhibition of growth, migration, and invasion of liver cancer cells and promoted cell apoptosis. Animal models revealed that HGK inhibited tumor growth in a synergistic manner with sorafenib. HGK inhibited class I HDAC expression and had low physiological toxicity. It has great potential as an adjuvant for liver cancer treatment and may be used in combination with anticancer drugs like sorafenib to improve therapeutic efficacy.

16.
Antioxidants (Basel) ; 9(4)2020 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-32218307

RESUMO

Atherosclerosis is a complex disease that includes several events, including reactive oxygen species (ROS) stress, inflammation, endothelial dysfunction, lipid deposition, and vascular smooth muscle cell (VSMC) proliferation and migration, which result in atherosclerotic plaque formation. Corylin, a flavonoid compound, is known to exhibit antioxidative, anti-inflammatory and antiproliferative effects. However, it remains unknown whether corylin could modulate atherogenesis. Here, we identified the anti-inflammatory effect of corylin in tumor necrosis factor-α (TNF-α)-induced vascular cells. In human umbilical vein endothelial cells (HUVECs), corylin suppressed TNF-α-induced monocyte adhesion to the HUVECs and transmigration by downregulating the ROS/JNK/nuclear factor-kappa beta (NF-κB) p65 pathway. In VSMCs, corylin inhibited TNF-α-induced monocyte adhesion by suppressing ROS production, mitogen-activated protein kinase (MAPK) phosphorylation and NF-κB p65 translocation. In platelet-derived growth factor-BB (PDGF-BB)-induced VSMCs, corylin inhibited PDGF-BB-induced VSMC proliferation and migration through regulating the mammalian target of rapamycin (mTOR)/dynamin-1-like protein 1 (Drp1) signaling cascade. In addition, corylin treatment not only attenuated atherosclerotic lesions, ROS production, vascular cell adhesion protein-1 (VCAM-1) expression, monocyte adhesion and VSMC proliferation in apolipoprotein E (ApoE)-deficient mice but also inhibited neointimal hyperplasia in endothelial-denuded mice. Thus, corylin may be a potential prevention and treatment for atherosclerosis.

17.
Molecules ; 25(4)2020 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-32093124

RESUMO

Epidermal growth factor receptor (EGFR) is frequently overexpressed and mutated in non-small cell lung cancer (NSCLC), which is the major type of lung cancer. The EGFR tyrosine kinase inhibitors (TKIs) are the approved treatment for patients harboring activating mutations in the EGFR kinase. However, most of the patients treated with EGFR-TKIs developed resistance. Therefore, the development of compounds exhibiting unique antitumor activities might help to improve the management of NSCLC patients. The total flavonoids from Daphne genkwa Sieb. et Zucc. have been shown to contain antitumor activity. Here, we have isolated a novel flavonoid hydroxygenkwanin (HGK) that displays selective cytotoxic effects on all of the NSCLC cells tested. In this study, we employed NSCLC cells harboring EGFR mutations and xenograft mouse model to examine the antitumor activity of HGK on TKI-resistant NSCLC cells. The results showed that HGK suppressed cancer cell viability both in vitro and in vivo. Whole-transcriptome analysis suggests that EGFR is a potential upstream regulator that is involved in the gene expression changes affected by HGK. In support of this analysis, we presented evidence that HGK reduced the level of EGFR and inhibited several EGFR-downstream signalings. These results suggest that the antitumor activity of HGK against TKI-resistant NSCLC cells acts by enhancing the degradation of EGFR.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Flavonoides/farmacologia , Neoplasias Pulmonares , Proteínas de Neoplasias/metabolismo , Proteólise/efeitos dos fármacos , Células A549 , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Sobrevivência Celular/efeitos dos fármacos , Daphne/química , Receptores ErbB/metabolismo , Flavonoides/química , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Transdução de Sinais/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos
18.
Cancers (Basel) ; 13(1)2020 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-33396393

RESUMO

Oncogenic mutations of epidermal growth factor receptor (EGFR) are responsive to targeted tyrosine kinase inhibitor (TKI) treatment in non-small-cell lung cancer (NSCLC). However, NSCLC patients harboring activating EGFR mutations inevitably develop resistance to TKIs. The acquired EGFR C797S mutation is a known mechanism that confers resistance to third-generation EGFR TKIs such as AZD9291. In this work, we employed CRISPR/Cas9 genome-editing technology to knock-in the EGFR C797S mutation into an NSCLC cell line harboring EGFR L858R/T790M. The established cell model was used to investigate the biology and treatment strategy of acquired EGFR C797S mutations. Transcriptome and proteome analyses revealed that the differentially expressed genes/proteins in the cells harboring the EGFR C797S mutation are associated with a mesenchymal-like cell state with elevated expression of AXL receptor tyrosine kinase. Furthermore, we presented evidence that inhibition of AXL is effective in slowing the growth of NSCLC cells harboring EGFR C797S. Our findings suggest that AXL inhibition could be a second-line or a potential adjuvant treatment for NSCLC harboring the EGFR C797S mutation.

19.
Biomolecules ; 10(1)2019 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-31877715

RESUMO

Daphne genkwa, a Chinese medicinal herb, is used frequently in Southeast Asian countries to treat diseases; the flavonoid hydroxygenkwanin (HGK) is extracted from its flower buds. The bioactivity of HGK, particularly as an anti-liver cancer agent, has not been explored. In this study, human hepatocellular carcinoma (HCC) cell lines and an animal xenograft model were employed to investigate both the activity of HGK against liver cancer and its cellular signaling mechanisms. HCC cells treated with HGK were subjected to cell function assays. Whole transcriptome sequencing was used to identify genes whose expression was influenced by HGK, and the flavonoid's cancer suppression mechanisms were further investigated through gain- and loss-of-function assays. Finally, in vitro findings were tested in a mouse xenograft model. The data showed that HGK induced the expression of the microRNA miR-320a, which in turn inhibited the expression of the transcription factor 'forkhead box protein M1' (FOXM1) and downstream FOXM1-regulated proteins related to epithelial-mesenchymal transition, thereby leading to the suppression of liver cancer cell growth and invasion. Significant inhibition of tumor growth was also observed in HGK-treated mice. Hence, the present study demonstrated the activity of HGK against liver cancer and validated its potential use as a therapeutic agent.


Assuntos
Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/fisiopatologia , Medicamentos de Ervas Chinesas/administração & dosagem , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Flavonoides/administração & dosagem , Proteína Forkhead Box M1/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , MicroRNAs/genética , Animais , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Daphne/química , Proteína Forkhead Box M1/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/fisiopatologia , Masculino , Camundongos Nus , MicroRNAs/metabolismo
20.
Front Oncol ; 9: 1168, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31750253

RESUMO

The extract of the seeds of Psoralea corylifolia Linn. (P. corylifolia) have been shown to display anti-tumor activity. However, the prospects of the active compounds from this plant in the treatment of oral squamous cell carcinoma (OSCC) remains unclear. In the present study, the antitumor effects of psorachromene, a flavonoid extracted from the seeds of P. corylifolia, were investigated using cells and animal models of OSCC; the downstream regulatory mechanisms were also elucidated. The results showed that psorachromene significantly repressed cell proliferation, migration, and invasiveness and increased the toxic effects of chemotherapeutic agents against OSCC cells. The repressive effects of psorachromene were attributable to the inhibition of EGFR-Slug signaling, and the induction of G2/M arrest and apoptosis in the OSCC cells. Additionally, we found that psorachromene induced the expression of tumor suppressor long non-coding ribonucleic acid (RNA) growth arrest-specific transcript 5 (GAS5) and the activation of its downstream anticancer mechanisms. Animal experiments also showed noticeable inhibition of tumor growth, without significant physiological toxicity. The findings indicate that psorachromene displays anti-tumor activity in OSCC, and warrants further investigation as a potential agent for clinical application.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA