Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Hum Mol Genet ; 29(13): 2218-2239, 2020 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-32504085

RESUMO

The RNA exosome is an essential ribonuclease complex required for processing and/or degradation of both coding and non-coding RNAs. We identified five patients with biallelic variants in EXOSC5, which encodes a structural subunit of the RNA exosome. The clinical features of these patients include failure to thrive, short stature, feeding difficulties, developmental delays that affect motor skills, hypotonia and esotropia. Brain MRI revealed cerebellar hypoplasia and ventriculomegaly. While we ascertained five patients, three patients with distinct variants of EXOSC5 were studied in detail. The first patient had a deletion involving exons 5-6 of EXOSC5 and a missense variant, p.Thr114Ile, that were inherited in trans, the second patient was homozygous for p.Leu206His and the third patient had paternal isodisomy for chromosome 19 and was homozygous for p.Met148Thr. The additional two patients ascertained are siblings who had an early frameshift mutation in EXOSC5 and the p.Thr114Ile missense variant that were inherited in trans. We employed three complementary approaches to explore the requirement for EXOSC5 in brain development and assess consequences of pathogenic EXOSC5 variants. Loss of function for exosc5 in zebrafish results in shortened and curved tails/bodies, reduced eye/head size and edema. We modeled pathogenic EXOSC5 variants in both budding yeast and mammalian cells. Some of these variants cause defects in RNA exosome function as well as altered interactions with other RNA exosome subunits. These findings expand the number of genes encoding RNA exosome subunits linked to human disease while also suggesting that disease mechanism varies depending on the specific pathogenic variant.


Assuntos
Antígenos de Neoplasias/genética , Cerebelo/anormalidades , Deficiências do Desenvolvimento/genética , Nanismo/genética , Complexo Multienzimático de Ribonucleases do Exossomo/genética , Malformações do Sistema Nervoso/genética , Proteínas de Ligação a RNA/genética , Animais , Cerebelo/patologia , Deficiências do Desenvolvimento/patologia , Nanismo/patologia , Mutação da Fase de Leitura/genética , Homozigoto , Humanos , Mutação de Sentido Incorreto/genética , Malformações do Sistema Nervoso/patologia , Linhagem , Peixe-Zebra/genética , Peixe-Zebra/crescimento & desenvolvimento
2.
Methods Mol Biol ; 2062: 3-33, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31768969

RESUMO

The evolutionarily conserved RNA exosome is a multisubunit ribonuclease complex that processes and/or degrades numerous RNAs. Recently, mutations in genes encoding both structural and catalytic subunits of the RNA exosome have been linked to human disease. Mutations in the structural exosome gene EXOSC2 cause a distinct syndrome that includes retinitis pigmentosa, hearing loss, and mild intellectual disability. In contrast, mutations in the structural exosome genes EXOSC3 and EXOSC8 cause pontocerebellar hypoplasia type 1b (PCH1b) and type 1c (PCH1c), respectively, which are related autosomal recessive, neurodegenerative diseases. In addition, mutations in the structural exosome gene EXOSC9 cause a PCH-like disease with cerebellar atrophy and spinal motor neuronopathy. Finally, mutations in the catalytic exosome gene DIS3 have been linked to multiple myeloma, a neoplasm of plasma B cells. How mutations in these RNA exosome genes lead to distinct, tissue-specific diseases is not currently well understood. In this chapter, we examine the role of the RNA exosome complex in human disease and discuss the mechanisms by which mutations in different exosome subunit genes could impair RNA exosome function and give rise to diverse diseases.


Assuntos
Doença/genética , Exossomos/genética , RNA/genética , Animais , Humanos , Mutação/genética
3.
Nucleic Acids Res ; 46(9): 4515-4532, 2018 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-29522130

RESUMO

Base excision repair (BER), which is initiated by DNA N-glycosylase proteins, is the frontline for repairing potentially mutagenic DNA base damage. The NTHL1 glycosylase, which excises DNA base damage caused by reactive oxygen species, is thought to be a tumor suppressor. However, in addition to NTHL1 loss-of-function mutations, our analysis of cancer genomic datasets reveals that NTHL1 frequently undergoes amplification or upregulation in some cancers. Whether NTHL1 overexpression could contribute to cancer phenotypes has not yet been explored. To address the functional consequences of NTHL1 overexpression, we employed transient overexpression. Both NTHL1 and a catalytically-dead NTHL1 (CATmut) induce DNA damage and genomic instability in non-transformed human bronchial epithelial cells (HBEC) when overexpressed. Strikingly, overexpression of either NTHL1 or CATmut causes replication stress signaling and a decrease in homologous recombination (HR). HBEC cells that overexpress NTHL1 or CATmut acquire the ability to grow in soft agar and exhibit loss of contact inhibition, suggesting that a mechanism independent of NTHL1 catalytic activity contributes to acquisition of cancer-related cellular phenotypes. We provide evidence that NTHL1 interacts with the multifunctional DNA repair protein XPG suggesting that interference with HR is a possible mechanism that contributes to acquisition of early cellular hallmarks of cancer.


Assuntos
Transformação Celular Neoplásica , Desoxirribonuclease (Dímero de Pirimidina)/metabolismo , Instabilidade Genômica , Carcinoma Pulmonar de Células não Pequenas/enzimologia , Linhagem Celular , Linhagem Celular Tumoral , Núcleo Celular/enzimologia , Dano ao DNA , Replicação do DNA , Desoxirribonuclease (Dímero de Pirimidina)/genética , Células Epiteliais/enzimologia , Humanos , Neoplasias Pulmonares/enzimologia , Mutação , Mucosa Respiratória/citologia , Mucosa Respiratória/enzimologia
4.
Cell Rep ; 20(6): 1372-1384, 2017 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-28793261

RESUMO

The Drosophila dNab2 protein is an ortholog of human ZC3H14, a poly(A) RNA binding protein required for intellectual function. dNab2 supports memory and axon projection, but its molecular role in neurons is undefined. Here, we present a network of interactions that links dNab2 to cytoplasmic control of neuronal mRNAs in conjunction with the fragile X protein ortholog dFMRP. dNab2 and dfmr1 interact genetically in control of neurodevelopment and olfactory memory, and their encoded proteins co-localize in puncta within neuronal processes. dNab2 regulates CaMKII, but not futsch, implying a selective role in control of dFMRP-bound transcripts. Reciprocally, dFMRP and vertebrate FMRP restrict mRNA poly(A) tail length, similar to dNab2/ZC3H14. Parallel studies of murine hippocampal neurons indicate that ZC3H14 is also a cytoplasmic regulator of neuronal mRNAs. Altogether, these findings suggest that dNab2 represses expression of a subset of dFMRP-target mRNAs, which could underlie brain-specific defects in patients lacking ZC3H14.


Assuntos
Proteínas de Drosophila/genética , Proteína do X Frágil da Deficiência Intelectual/genética , Redes Reguladoras de Genes , Neurônios/metabolismo , Proteínas de Ligação a RNA/genética , Animais , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Linhagem Celular Tumoral , Células Cultivadas , Drosophila , Proteínas de Drosophila/metabolismo , Feminino , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Masculino , Memória , Camundongos , Neurônios/fisiologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo , Olfato
5.
J Biol Chem ; 286(43): 37429-45, 2011 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-21878619

RESUMO

In Saccharomyces cerevisiae, non-coding RNAs, including cryptic unstable transcripts (CUTs), are subject to degradation by the exosome. The Trf4/5-Air1/2-Mtr4 polyadenylation (TRAMP) complex in S. cerevisiae is a nuclear exosome cofactor that recruits the exosome to degrade RNAs. Trf4/5 are poly(A) polymerases, Mtr4 is an RNA helicase, and Air1/2 are putative RNA-binding proteins that contain five CCHC zinc knuckles (ZnKs). One central question is how the TRAMP complex, especially the Air1/2 protein, recognizes its RNA substrates. To characterize the function of the Air1/2 protein, we used random mutagenesis of the AIR1/2 gene to identify residues critical for Air protein function. We identified air1-C178R and air2-C167R alleles encoding air1/2 mutant proteins with a substitution in the second cysteine of ZnK5. Mutagenesis of the second cysteine in AIR1/2 ZnK1-5 reveals that Air1/2 ZnK4 and -5 are critical for Air protein function in vivo. In addition, we find that the level of CUT, NEL025c, in air1 ZnK1-5 mutants is stabilized, particularly in air1 ZnK4, suggesting a role for Air1 ZnK4 in the degradation of CUTs. We also find that Air1/2 ZnK4 and -5 are critical for Trf4 interaction and that the Air1-Trf4 interaction and Air1 level are critical for TRAMP complex integrity. We identify a conserved IWRXY motif in the Air1 ZnK4-5 linker that is important for Trf4 interaction. We also find that hZCCHC7, a putative human orthologue of Air1 that contains the IWRXY motif, localizes to the nucleolus in human cells and interacts with both mammalian Trf4 orthologues, PAPD5 and PAPD7 (PAP-associated domain containing 5 and 7), suggesting that hZCCHC7 is the Air component of a human TRAMP complex.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , RNA Helicases DEAD-box/metabolismo , DNA Polimerase Dirigida por DNA/metabolismo , RNA Polimerases Dirigidas por DNA/metabolismo , Complexos Multiproteicos/metabolismo , Estabilidade de RNA/fisiologia , RNA Fúngico/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Motivos de Aminoácidos , Substituição de Aminoácidos , Nucléolo Celular/genética , Nucléolo Celular/metabolismo , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , RNA Helicases DEAD-box/genética , DNA Polimerase Dirigida por DNA/genética , RNA Polimerases Dirigidas por DNA/genética , Humanos , Complexos Multiproteicos/genética , Mutagênese , Mutação de Sentido Incorreto , RNA Nucleotidiltransferases/genética , RNA Nucleotidiltransferases/metabolismo , RNA Fúngico/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
6.
J Biol Chem ; 285(34): 26022-32, 2010 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-20554526

RESUMO

Proteins bound to the poly(A) tail of mRNA transcripts, called poly(A)-binding proteins (Pabs), play critical roles in regulating RNA stability, translation, and nuclear export. Like many mRNA-binding proteins that modulate post-transcriptional processing events, assigning specific functions to Pabs is challenging because these processing events are tightly coupled to one another. To investigate the role that a novel class of zinc finger-containing Pabs plays in these coupled processes, we defined the mode of polyadenosine RNA recognition for the conserved Saccharomyces cerevisiae Nab2 protein and assessed in vivo consequences caused by disruption of RNA binding. The polyadenosine RNA recognition domain of Nab2 consists of three tandem Cys-Cys-Cys-His (CCCH) zinc fingers. Cells expressing mutant Nab2 proteins with decreased binding to polyadenosine RNA show growth defects as well as defects in poly(A) tail length but do not accumulate poly(A) RNA in the nucleus. We also demonstrate genetic interactions between mutant nab2 alleles and mutant alleles of the mRNA 3'-end processing machinery. Together, these data provide strong evidence that Nab2 binding to RNA is critical for proper control of poly(A) tail length.


Assuntos
Adenosina/metabolismo , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Polímeros/metabolismo , Sinais de Poliadenilação na Ponta 3' do RNA/fisiologia , RNA Fúngico/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Núcleo Celular , Mutação , Ligação Proteica , RNA Mensageiro/química , RNA Mensageiro/metabolismo , Dedos de Zinco
7.
Gene ; 439(1-2): 71-8, 2009 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-19303045

RESUMO

The human ZC3H14 gene encodes an evolutionarily conserved Cys(3)His zinc finger protein that binds specifically to polyadenosine RNA and is thus postulated to modulate post-transcriptional gene expression. Expressed sequence tag (EST) data predicts multiple splice variants of both human and mouse ZC3H14. Analysis of ZC3H14 expression in both human cell lines and mouse tissues confirms the presence of multiple alternatively spliced transcripts. Although all of these transcripts encode protein isoforms that contain the conserved C-terminal zinc finger domain, suggesting that they could all bind to polyadenosine RNA, they differ in other functionally important domains. Most of the alternative transcripts encode closely related proteins (termed isoforms 1, 2, 3, and 3 short) that differ primarily in the inclusion of three small exons, 9, 10, and 11, resulting in predicted protein isoforms ranging from 82 to 64 kDa. Each of these closely related isoforms contains predicted classical nuclear localization signals (cNLS) within exons 7 and 11. Consistent with the presence of these putative nuclear targeting signals, these ZC3H14 isoforms are all localized to the nucleus. In contrast, an additional transcript encodes a smaller protein (34 kDa) with an alternative first exon (isoform 4). Consistent with the absence of the predicted cNLS motifs located in exons 7 and 11, ZC3H14 isoform 4 is localized to the cytoplasm. Both EST data and experimental data suggest that this variant is enriched in testes and brain. Using an antibody that detects endogenous ZC3H14 isoforms 1-3 reveals localization of these isoforms to nuclear speckles. These speckles co-localize with the splicing factor, SC35, suggesting a role for nuclear ZC3H14 in mRNA processing. Taken together, these results demonstrate that multiple transcripts encoding several ZC3H14 isoforms exist in vivo. Both nuclear and cytoplasmic ZC3H14 isoforms could have distinct effects on gene expression mediated by the common Cys(3)His zinc finger polyadenosine RNA binding domain.


Assuntos
Adenosina/metabolismo , Proteínas Nucleares/metabolismo , Polímeros/metabolismo , Proteínas de Ligação a RNA/metabolismo , Dedos de Zinco , Processamento Alternativo , Sequência de Aminoácidos , Animais , Linhagem Celular , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Éxons , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Modelos Moleculares , Dados de Sequência Molecular , Sinais de Localização Nuclear/metabolismo , Proteínas Nucleares/genética , Especificidade de Órgãos , Filogenia , Proteínas de Ligação a Poli(A) , Ligação Proteica , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas de Ligação a RNA/genética
8.
Yeast ; 26(5): 261-72, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19319831

RESUMO

Many extracellular signals trigger changes in gene expression by altering the steady-state level of target transcripts. This modulation of transcript levels is typically ascribed to changes in transcription of target genes; however, there are numerous examples of changes in mRNA processing and stability that contribute to the overall change in transcript levels following signalling pathway activation. The alpha-factor-stimulated mating pathway in Saccharomyces cerevisiae is a receptor-operated MAP kinase cascade that results in increased levels of a large number of target mRNA transcripts when stimulated acutely. A previous study identified many of the transcripts modulated in response to alpha-factor and argued, based on genetic studies, that the response occurred solely at the level of gene transcription (Roberts et al., 2000). We directly examined whether enhanced mRNA stability contributes to the increase in the steady-state level of alpha-factor target transcripts by exploiting a temperature-sensitive RNA Polymerase II mutant, a Ste12 transcription factor import mutant, and tet-regulated synthetic mating factor minigene reporters. Examination of a panel of alpha-factor-responsive transcripts reveals no change in mRNA stability in response to alpha-factor stimulation, providing direct evidence that this signal transduction pathway in S. cerevisiae does not function through modulating transcript stability.


Assuntos
Regulação Fúngica da Expressão Gênica , Peptídeos/metabolismo , Estabilidade de RNA , RNA Fúngico/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Fator de Acasalamento , Quinases de Proteína Quinase Ativadas por Mitógeno , RNA Polimerase II/metabolismo , RNA Mensageiro/metabolismo , Receptores de Fator de Acasalamento/metabolismo , Proteínas Repressoras/metabolismo , Saccharomyces cerevisiae/genética , Transdução de Sinais , Fatores de Transcrição/metabolismo , Transcrição Gênica
9.
EMBO J ; 21(12): 2843-53, 2002 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-12065398

RESUMO

Interactions with nucleoporins containing FxFG-repeat cores are crucial for the nuclear import of RanGDP mediated by nuclear transport factor 2 (NTF2). We describe here the 1.9 A resolution crystal structure of yeast NTF2-N77Y bound to a FxFG-nucleoporin core, which provides a basis for understanding this interaction and its role in nuclear trafficking. The two identical FxFG binding sites on the dimeric molecule are formed by residues from each chain of NTF2. Engineered mutants at the interaction interface reduce the binding of NTF2 to nuclear pores and cause reduced growth rates and Ran mislocalization when substituted for the wild-type protein in yeast. Comparison with the crystal structure of FG-nucleoporin cores bound to importin-beta and TAP/p15 identified a number of common features of their binding sites. The structure of the binding interfaces on these transport factors provides a rationale for the specificity of their interactions with nucleoporins that, combined with their weak binding constants, facilitates rapid translocation through NPCs during nuclear trafficking.


Assuntos
Transporte Ativo do Núcleo Celular/fisiologia , Complexo de Proteínas Formadoras de Poros Nucleares/química , Proteínas de Transporte Nucleocitoplasmático/química , Estrutura Terciária de Proteína , Sequência de Aminoácidos , Animais , Sítios de Ligação , Proteínas de Transporte/química , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Cristalografia por Raios X , Dimerização , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Proteínas de Transporte Nucleocitoplasmático/genética , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Peptídeos/química , Peptídeos/metabolismo , Ligação Proteica , Ratos , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA