Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
ACS Omega ; 9(8): 9161-9169, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38434906

RESUMO

We successfully developed a fluorescent drug sensor from clinically relevant New Delhi metallo-ß-lactamase-1 (NDM-1). The F70 residue was chosen to be replaced with a cysteine for conjugation with thiol-reactive fluorescein-5-maleimide to form fluorescent F70Cf, where "f" refers to fluorescein-5-maleimide. Our proteolytic studies of unlabeled F70C and labeled F70Cf monitored by electrospray ionization-mass spectrometry (ESI-MS) revealed that fluorescein-5-maleimide was specifically linked to C70 in 1:1 mole ratio (F70C:fluorophore). Our drug sensor (F70Cf) can detect the ß-lactam antibiotics cefotaxime and cephalothin by giving stronger fluorescence in the initial binding phase and then declining fluorescence signals as a result of the hydrolysis of the antibiotics into acid products. F70Cf can also detect non-ß-lactam inhibitors (e.g., l-captopril, d-captopril, dl-thiorphan, and thanatin). In all cases, F70Cf exhibits stronger fluorescence due to inhibitor binding and subsequently sustained fluorescence signals in a later stage. Native ESI-MS results show that F70Cf can bind to all four inhibitors. Moreover, our drug sensor is compatible with a high-throughput microplate reader and has the capability to perform in vitro drug screening.

2.
Int J Biol Macromol ; 253(Pt 5): 127742, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37923039

RESUMO

Asparaginase has been traditionally applied for only treating acute lymphoblastic leukemia due to its ability to deplete asparagine. However, its ultimate anticancer potential for treating solid tumors has not yet been unleashed. In this study, we bioengineered Erwinia chrysanthemi asparaginase (ErWT), one of the US Food and Drug Administration-approved types of amino acid depleting enzymes, to achieve double amino acid depletions for treating a solid tumor. We constructed a fusion protein by joining an albumin binding domain (ABD) to ErWT via a linker (GGGGS)5 to achieve ABD-ErS5. The ABD could bind to serum albumin to form an albumin-ABD-ErS5 complex, which could avoid renal clearance and escape from anti-drug antibodies, resulting in a remarkably prolonged elimination half-life of ABD-ErS5. Meanwhile, ABD-ErS5 did not only deplete asparagine but also glutamine for ∼2 weeks. A biweekly administration of ABD-ErS5 (1.5 mg/kg) significantly suppressed tumor growth in an MKN-45 gastric cancer xenograft model, demonstrating a novel approach for treating solid tumor depleting asparagine and glutamine. Multiple administrations of ABD-ErS5 did not cause any noticeable histopathological abnormalities of key organs, suggesting the absence of acute toxicity to mice. Our results suggest ABD-ErS5 is a potential therapeutic candidate for treating gastric cancer.


Assuntos
Antineoplásicos , Dickeya chrysanthemi , Neoplasias Gástricas , Humanos , Animais , Camundongos , Asparaginase/genética , Asparaginase/farmacologia , Asparaginase/uso terapêutico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Dickeya chrysanthemi/genética , Dickeya chrysanthemi/metabolismo , Asparagina , Glutamina , Neoplasias Gástricas/tratamento farmacológico , Enterobacteriaceae/metabolismo , Albumina Sérica
3.
Int J Mol Sci ; 24(18)2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37762044

RESUMO

Colorectal cancer (CRC) has been proven to be highly reliant on arginine availability. Limiting arginine-rich foods or treating patients with arginine-depleting enzymes arginine deiminase (ADI) or arginase can suppress colon cancer. However, arginase and ADI are not the best drug candidates for CRC. Ornithine, the product of arginase, can enhance the supply of polyamine, which favors CRC cell growth, while citrulline, the product of ADI, faces the problem of arginine recycling due to the overexpression of argininosuccinate synthetase (ASS). Biosynthetic arginine decarboxylase (ADC), an enzyme that catalyzes the conversion of arginine to agmatine and carbon dioxide, may be a better choice as it combines both arginine depletion and suppression of intracellular polyamine synthesis via its product agmatine. ADC has anti-tumor potential yet has received much less attention than the other two arginine-depleting enzymes. In order to gain a better understanding of ADC, the preparation and the anti-cancer properties of this enzyme were explored in this study. When tested in vitro, ADC inhibited the proliferation of three colorectal cancer cell lines regardless of their ASS cellular expression. In contrast, ADC had a lesser cytotoxic effect on the human foreskin fibroblasts and rat primary hepatocytes. Further in vitro studies revealed that ADC induced S and G2/M phase cell-cycle arrest and apoptosis in HCT116 and LoVo cells. ADC-induced apoptosis in HCT116 cells followed the mitochondrial apoptotic pathway and was caspase-3-dependent. With all results obtained, we suggest that arginine is a potential target for treating colorectal cancer with ADC, and the anti-cancer properties of ADC should be more deeply investigated in the future.


Assuntos
Agmatina , Neoplasias do Colo , Humanos , Animais , Ratos , Arginase , Arginina
4.
PLoS One ; 18(8): e0287253, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37616226

RESUMO

Pregestational diabetes is highly associated with increased risk of birth defects. We previously reported that the expression of Cyp26a1, the major catabolizing enzyme for controlling retinoic acid (RA) homeostasis, is significantly down-regulated in embryos of diabetic mice, thereby increasing the embryo's susceptibility to malformations caused by RA dysregulation. However, the underlying mechanism for the down-regulation of Cyp26a1 remains unclear. This study aimed to investigate whether elevated maternal blood glucose in the diabetic milieu is a critical factor for the altered Cyp26a1 expression. Streptozotozin-induced diabetic pregnant mice were treated with phlorizin (PHZ) to reduce blood glucose concentrations via induction of renal glucosuria. Embryonic Cyp26a1 expression level, RA catabolic activity and susceptibility to various RA-induced abnormalities were examined. To test the dose-dependent effect of glucose on Cyp26a1 level, early head-fold stage rat embryos of normal pregnancy were cultured in vitro with varying concentrations of D-glucose, followed by quantification of Cyp26a1 transcripts. We found that Cyp26a1 expression, which was down-regulated in diabetic pregnancy, could be normalized under reduced maternal blood glucose level, concomitant with an increase in RA catabolic activity in embryonic tissues. Such normalization could successfully reduce the susceptibility to different RA-induced malformations including caudal regression, cleft palate and renal malformations. The expression level of Cyp26a1 in the embryo was inversely correlated with D-glucose concentrations. Diabetic patients suffer from retinopathy, dermopathy, male infertility and increased cancer risk. Coincidentally, RA dysregulation is also associated with these health problems. Our results provided evidence that elevated glucose can down-regulate Cyp26a1 expression level and disturb RA homeostasis, shedding light on the possibility of affecting the health of diabetic patients via a similar mechanism.


Assuntos
Diabetes Mellitus Experimental , Hiperglicemia , Masculino , Feminino , Gravidez , Humanos , Animais , Camundongos , Ratos , Glicemia , Ácido Retinoico 4 Hidroxilase/genética , Glucose
5.
Int J Mol Sci ; 24(11)2023 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-37298352

RESUMO

Growing evidence proves that amino acid restriction can reverse obesity by reducing adipose tissue mass. Amino acids are not only the building blocks of proteins but also serve as signaling molecules in multiple biological pathways. The study of adipocytes' response to amino acid level changes is crucial. It has been reported that a low concentration of lysine suppresses lipid accumulation and transcription of several adipogenic genes in 3T3-L1 preadipocytes. However, the detailed lysine-deprivation-induced cellular transcriptomic changes and the altered pathways have yet to be fully studied. Here, using 3T3-L1 cells, we performed RNA sequencing on undifferentiated and differentiated cells, and differentiated cells under a lysine-free environment, and the data were subjected to KEGG enrichment. We found that the differentiation process of 3T3-L1 cells to adipocytes required the large-scale upregulation of metabolic pathways, mainly on the mitochondrial TCA cycle, oxidative phosphorylation, and downregulation of the lysosomal pathway. Single amino acid lysine depletion suppressed differentiation dose dependently. It disrupted the metabolism of cellular amino acids, which could be partially reflected in the changes in amino acid levels in the culture medium. It inhibited the mitochondria respiratory chain and upregulated the lysosomal pathway, which are essential for adipocyte differentiation. We also noticed that cellular interleukin 6 (IL6) expression and medium IL6 level were dramatically increased, which was one of the targets for suppressing adipogenesis induced by lysine depletion. Moreover, we showed that the depletion of some essential amino acids such as methionine and cystine could induce similar phenomena. This suggests that individual amino acid deprivation may share some common pathways. This descriptive study dissects the pathways for adipogenesis and how the cellular transcriptome was altered under lysine depletion.


Assuntos
Adipogenia , Lisina , Camundongos , Animais , Adipogenia/genética , Células 3T3-L1 , Lisina/genética , Interleucina-6/genética , Diferenciação Celular/genética , Perfilação da Expressão Gênica , PPAR gama/metabolismo
6.
Angew Chem Int Ed Engl ; 62(12): e202218038, 2023 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-36670048

RESUMO

The reaction of a series of electron-deficient isoindolium-based allenes with sulfhydryl compounds has been studied, leading to the formation of isoindolium-based vinyl sulfides. The vinyl sulfides generated could be readily converted into the corresponding indanones and amines upon heating at 30-70 °C with good yields up to 61 %. The thermal cleavage reaction of vinyl sulfides was further studied for developing temperature-sensitive systems. Notably, a novel FRET-based fluorescent temperature sensor was designed and synthesized for temperature sensing at 50 °C, giving a 6.5-fold blue fluorescence enhancement. Moreover, chemoselective bioconjugation of cysteine-containing peptides with the isoindolium-based allenes for the construction of multifunctional peptide bioconjugates was investigated. Thermal cleavage of isoindoliums on the modified peptides at 35-70 °C gave indanone bioconjugates with up to >99 % conversion. These results indicated the biocompatibility of this novel temperature-sensitive reaction.


Assuntos
Cisteína , Peptídeos , Cisteína/química , Fluorescência , Temperatura , Sulfetos
7.
Invest New Drugs ; 40(5): 895-904, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35857203

RESUMO

Gastric cancer is one of the most common malignant solid tumors in the world, especially in Asia with high mortality due to a lack of effective treatment. The potential usage of the newly constructed arginine-depleting enzyme-mono-PEGylated Bacillus caldovelox arginase mutant (BCA-M-PEG20), an effective drug against multiple cancer cell lines such as cervical and lung cancers, for the treatment of gastric cancer was demonstrated. Our results indicated that BCA-M-PEG20 significantly inhibited argininosuccinate synthetase (ASS)-positive gastric cancer cells, MKN-45 and BGC-823, while another arginine-depleting enzyme, arginine deiminase (ADI, currently under Phase III clinical trial), failed to suppress the growth of gastric cancer cells. In vitro studies demonstrated that BCA-M-PEG20 inhibited MKN-45 cells by inducing autophagy and cell cycle arrest at the S phase under 0.58 U/mL (IC50 values). Significant caspase-dependent apoptosis was induced in MKN-45 after the treatment with 2.32 U/mL of BCA-M-PEG20. In vivo studies showed that administrations of BCA-M-PEG20 at 250 U/mouse twice per week significantly suppressed about 50% of tumor growth in the MKN-45 gastric cancer xenograft model. Taken together, BCA-M-PEG20 demonstrated a superior potential to be an anti-gastric cancer drug.


Assuntos
Neoplasias Pulmonares , Neoplasias Gástricas , Animais , Apoptose , Arginase/farmacologia , Arginina , Autofagia , Pontos de Checagem do Ciclo Celular , Linhagem Celular Tumoral , Geobacillus , Humanos , Hidrolases/farmacologia , Hidrolases/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Camundongos , Polietilenoglicóis/farmacologia , Polietilenoglicóis/uso terapêutico , Neoplasias Gástricas/tratamento farmacológico
8.
RSC Adv ; 12(10): 6248-6254, 2022 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-35424586

RESUMO

A series of quinolizinium-based fluorescent reagents were prepared by visible light-mediated gold-catalyzed cis-difunctionalization between quinolinium diazonium salts and electron-deficient alkyne-linked phenylethynyl trimethylsilanes. The electron-deficient alkynyl group of the quinolizinium-based fluorescent reagents underwent nucleophilic addition reaction with the sulfhydryl group on cysteine-containing peptides and proteins. The quinolizinium-based fluorescent reagents were found to function as highly selective reagents for the modification of cysteine-containing peptides and proteins with good to excellent conversions (up to 99%). Moreover, the modified BCArg mutants bearing cationic quinolizinium compounds 1b, 1d, 1e and 1h exhibit comparable activity in enzymatic and cytotoxicity assays to the unmodified one.

9.
Mol Cancer Ther ; 20(11): 2218-2227, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34433661

RESUMO

Recent studies have revealed that targeting amino acid metabolic enzymes is a promising strategy in cancer therapy. Acute myeloid leukemia (AML) downregulates the expression of argininosuccinate synthase (ASS1), a recognized rate-limiting enzyme for arginine synthesis, and yet displays a critical dependence on extracellular arginine for survival and proliferation. This dependence on extracellular arginine, also known as arginine auxotrophy, suggests that arginine deprivation would be a treatment strategy for AML. NEI-01, a novel arginine-depleting enzyme, is capable of binding to serum albumin to extend its circulating half-life, leading to a potent anticancer activity. Here we reported the preclinical activity of NEI-01 in arginine auxotrophic AMLs. NEI-01 efficiently depleted arginine both in vitro and in vivo NEI-01-induced arginine deprivation was cytotoxic to arginine auxotrophic AML cells through induction of cell-cycle arrest and apoptosis. Furthermore, the potent anti-leukemia activities of NEI-01 were observed in three different types of mouse models including human cell line-derived xenograft, mouse cell line-derived homografts in syngeneic mice and patient-derived xenograft. This preclinical data provide strong evidence to support the potential use of NEI-01 as a therapeutic approach in AML treatment.


Assuntos
Arginina/metabolismo , Hormônios Hipotalâmicos/metabolismo , Leucemia Mieloide Aguda/tratamento farmacológico , Fragmentos de Peptídeos/metabolismo , Animais , Modelos Animais de Doenças , Humanos , Leucemia Mieloide Aguda/patologia , Camundongos
10.
Cancer Lett ; 502: 58-70, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33429005

RESUMO

Extensive studies have shown that cancer cells have specific nutrient auxotrophy and thus have much a higher demand for certain nutrients than normal cells. Amino acid deprivation has attracted much attention in cancer therapy with positive outcomes from clinical trials. Arginine, as one of the conditionally essential amino acids, plays a pivotal role in cellular division and metabolism. Since many types of cancer cells exhibit decreased expression of argininosuccinate synthetase and/or ornithine transcarbamylase, they are auxotrophic for arginine, which makes arginine deprivation an accessible choice for cancer treatment. Arginine deiminase (ADI) and human arginase (hArg) are the two major protein drugs used for arginine deprivation and are undergoing many clinical trials. However, the clinical application of ADI and hArg is facing some common problems, including their short half-lives, immunogenicity and inconsistent production, which underlines the importance of improving these drugs using protein engineering techniques. Thus, we systematically review the latest studies of protein engineering and anti-cancer studies based on in vitro, in vivo and clinical models of ADI and hArg, and we include the latest studies on drug combinations consisting of ADI/hArg with chemotherapeutic drugs.


Assuntos
Arginase/uso terapêutico , Arginina/deficiência , Hidrolases/uso terapêutico , Neoplasias/tratamento farmacológico , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Ensaios Clínicos como Assunto , Desenho de Fármacos , Humanos , Hidrolases/farmacologia , Neoplasias/metabolismo
11.
Methods Mol Biol ; 2199: 289-313, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33125657

RESUMO

Fluorescent labeling of protein has been widely used in microbiology for detection and analysis. Molecular dynamics simulations provide vital supporting information for predictions and interpretations of experimental results. While force fields for proteins with regular amino acids are readily available, parameters for covalently attached fluorophores have to be incorporated into these force fields before they can be used for simulations. In this chapter, we shall discuss the methods to parameterize a fluorescent probe (fluorescein) attached to a cysteine, as a modified residue, for performing simulations with GROMACS.


Assuntos
Fluoresceína/química , Simulação de Dinâmica Molecular , Proteínas/química , Software
12.
Int J Mol Sci ; 21(20)2020 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-33050217

RESUMO

With our recent success in developing a recombinant human arginase drug against broad-spectrum cancer cell lines, we have explored the potential of a recombinant Bacillus caldovelox arginase mutant (BCA-M) for human cervical cancer treatment. Our studies demonstrated that BCA-M significantly inhibited the growth of human cervical cancer cells in vitro regardless of argininosuccinate synthetase (ASS) and argininosuccinate lyase (ASL) expression. Drug susceptibilities correlate well with the expressions of major urea cycle genes and completeness of L-arginine regeneration pathways. With the expressions of ASS and ASL genes conferring resistance to L-arginine deiminase (ADI) which is undergoing Phase III clinical trial, BCA-M offers the advantage of a broader spectrum of susceptible cancer cells. Mechanistic studies showed that BCA-M inhibited the growth of human cervical cancer cells by inducing apoptosis and cell cycle arrest at S and/or G2/M phases. Our results also displayed that autophagy served as a protective mechanism, while the growth inhibitory effects of BCA-M could be enhanced synergistically by its combination to the autophagy inhibitor, chloroquine (CQ), on human cervical cancer cells.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Arginase/farmacologia , Autofagia/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Geobacillus/enzimologia , Proteínas Recombinantes/farmacologia , Arginase/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sinergismo Farmacológico , Feminino , Perfilação da Expressão Gênica , Geobacillus/genética , Humanos , Redes e Vias Metabólicas/efeitos dos fármacos , Proteínas Mutantes , Proteínas Recombinantes/genética , Ureia/metabolismo , Neoplasias do Colo do Útero/tratamento farmacológico , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/metabolismo , Neoplasias do Colo do Útero/patologia
13.
Int J Biol Macromol ; 165(Pt A): 472-482, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-32971169

RESUMO

Rationally designed mutations on recombinant arginine deiminase (ADI) could act as a 'turn-off' L-arginine (L-Arg) fluorescent biosensor and provide an alternative method for rapid determination of L-Arg. Double mutations were introduced on the Cys251➔Ser251 and Thr265➔Cys265 of recombinant ADI, rendering a single cysteine present on the protein surface for the site-specific attachment of a fluorophore, fluorescein-5-maleimide. The double mutations on ADI (265C) and its fluorescein-labelled form (265Cf) conserved the catalytic efficiency of wild-type ADI. Upon binding to L-Arg, 265Cf induced structural conformational changes and rendered the fluorescein moiety to move closer to Trp264, resulting in fluorescence quenching. The duration of fluorescence quenching was dependant on the L-Arg concentration. A linear relationship between the time at the maximum rate of fluorescence change and L-Arg concentrations, which ranged from 2.5 to 100 µM, was found with R2 = 0.9988. The measurement time was within 0.15-4 min. Determination of L-Arg concentration in fetal bovine serum could be achieved by the standard addition method and without sample pre-treatment. The result showed a good agreement with the one determined by mass spectrometry, suggesting our biosensor as a promising tool for the detection of L-Arg in biological samples.


Assuntos
Substituição de Aminoácidos , Arginina/sangue , Técnicas Biossensoriais , Fluoresceínas/química , Hidrolases/química , Animais , Bovinos , Hidrolases/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética
14.
Int J Mol Sci ; 21(12)2020 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-32545874

RESUMO

L-arginine (L-Arg) depletion induced by randomly PEGylated arginine deiminase (ADI-PEG20) can treat arginosuccinate synthase (ASS)-negative cancers, and ADI-PEG20 is undergoing phase III clinical trials. Unfortunately, ASS-positive cancers are resistant to ADI-PEG20. Moreover, the yield of ADI production is low because of the formation of inclusion bodies. Here, we report a thermostable arginine-depleting enzyme, Bacillus caldovelox arginase mutant (BCA-M: Ser161->Cys161). An abundant amount of BCA-M was easily obtained via high cell-density fermentation and heat treatment purification. Subsequently, we prepared BCA-M-PEG20, by conjugating a single 20 kDa PEG monomer onto the Cys161 residue via thio-chemistry. Unlike ADI-PEG20, BCA-M-PEG20 significantly inhibited ASS-positive lung cancer cell growth. Pharmacodynamic studies showed that a single intraperitoneal injection (i.p). administration of 250 U/mouse of BCA-M-PEG20 induced low L-Arg level over 168 h. The mono-PEGylation of BCA-M prolonged its elimination half-life from 6.4 to 91.4 h (a 14-fold increase). In an A549 lung cancer xenograft model, a weekly administration of 250 U/mouse of BCA-M-PEG20 suppressed tumor growth significantly. We also observed that BCA-M-PEG20 did not cause any significant safety issue in mouse models. Overall, BCA-M-PEG20 showed excellent results in drug production, potency, and stability. Thereby, it has great potential to become a promising candidate for lung cancer therapy.


Assuntos
Arginase/farmacologia , Geobacillus/enzimologia , Neoplasias Pulmonares/tratamento farmacológico , Mutação , Células A549 , Animais , Arginase/química , Arginase/genética , Arginina/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/farmacologia , Estabilidade de Medicamentos , Geobacillus/genética , Meia-Vida , Humanos , Hidrolases/administração & dosagem , Hidrolases/farmacologia , Injeções Intraperitoneais , Neoplasias Pulmonares/metabolismo , Camundongos , Modelos Moleculares , Polietilenoglicóis/administração & dosagem , Polietilenoglicóis/química , Polietilenoglicóis/farmacologia , Resultado do Tratamento , Ensaios Antitumorais Modelo de Xenoenxerto
15.
PLoS One ; 15(4): e0231633, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32353864

RESUMO

Arginine deprivation cancer therapy targets certain types of malignancies with positive result in many studies and clinical trials. NEI-01 was designed as a novel arginine-depleting enzyme comprising an albumin binding domain capable of binding to human serum albumin to lengthen its half-life. In the present work, NEI-01 is shown to bind to serum albumin from various species, including mice, rat and human. Single intraperitoneal administration of NEI-01 to mice reduced plasma arginine to undetectable level for at least 9 days. Treatment of NEI-01 specifically inhibited cell viability of MIA PaCa-2 and PANC-1 cancer cell lines, which were ASS1 negative. Using a human pancreatic mouse xenograft model, NEI-01 treatment significantly reduced tumor volume and weight. Our data provides proof of principle for a cancer treatment strategy using NEI-01.


Assuntos
Antineoplásicos/uso terapêutico , Arginina/metabolismo , Carcinoma/tratamento farmacológico , Neoplasias Pancreáticas/tratamento farmacológico , Desiminases de Arginina em Proteínas/uso terapêutico , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/metabolismo , Arginina/sangue , Arginina/deficiência , Argininossuccinato Sintase/metabolismo , Linhagem Celular Tumoral , Feminino , Humanos , Injeções Intraperitoneais , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Ligação Proteica , Desiminases de Arginina em Proteínas/administração & dosagem , Desiminases de Arginina em Proteínas/metabolismo , Ratos , Albumina Sérica/metabolismo
16.
Appl Microbiol Biotechnol ; 104(9): 3921-3934, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32144472

RESUMO

L-Arginine (L-Arg) depletion has attracted great attention in cancer therapy. Although two types of arginine-depleting enzymes, arginine deiminase (ADI) and human arginase I, are undergoing clinical trials, random site of PEGylation, low efficacy of heavy metal as co-factor, and immunogenicity limit the performance of these drugs and cause difficulty in a homogeneous production. Here we screened ten catalytic metal ions and have successfully produced a site-specific mono-PEGylated human arginase I mutant by conjugating the Cys45 residue to PEG-maleimide to minimize the decrease in activity and produce a homogeneous product. The catalytic efficiency trend of metal ion-enriched human arginase I mutant (HAI) was Co2+ > Ni2+ ≫ Mn2+. The overall kcat/KM values of Co-HAI and Ni-HAI were higher than Mn-HAI by ~ 8.7- and ~ 5.2-folds, respectively. Moreover, the results of enzyme kinetics and circular dichroism spectrometry demonstrated that the 20 or 40 kDa linear and branched PEG attached on the HAI surface did not affect the enzyme activity and the protein secondary structures. In vitro studies showed that both Co-HAI-PEG20L and Ni-HAI-PEG20L inhibited the growth of eight types of cancer cell lines. The pharmacodynamic study in mice demonstrated that the i.p. administration of Co-HAI-PEG20L at 13 mg/kg and Ni-HAI-PEG20L at 15 mg/kg was able to maintain a L-Arg level below its detection limit for over 120 h after one injection. The body weights of mice could return to normal levels within 5 days after injection, showing that the doses were well-tolerated. Therefore, both the Ni-HAI-PEG20L and Co-HAI-PEG20L are promising candidates for cancer therapy. KEY POINTS: • Mono-PEGylation applied on human arginase I mutant (HAI) successfully. • The catalytic efficiency of Co- and Ni-enriched HAI was higher than the wild type. • At least eight types of cancer cell lines were inhibited by Co- and Ni-HAI-PEG20L. • Co- and Ni-HAI-PEG20L were able to achieve weekly depletion of L-Arg. Graphical abstract.


Assuntos
Arginase/genética , Arginase/uso terapêutico , Arginina/antagonistas & inibidores , Neoplasias/tratamento farmacológico , Engenharia de Proteínas , Animais , Linhagem Celular Tumoral , Humanos , Íons , Metais , Camundongos , Camundongos Endogâmicos BALB C , Mutação , Estrutura Secundária de Proteína
17.
Bioorg Med Chem ; 28(7): 115375, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32122753

RESUMO

Alkyne is a useful functionality incorporated in proteins for site-selective bioconjugation reactions. Although effective bioconjugation reactions such as copper(I)-catalyzed and/or copper-free 1,3-dipolar cycloadditions of alkynes and azides are the most common approaches, the development of new alkyne-based bioconjugation reactions is still an ongoing interest in chemical biology. In this work, a new approach has been developed for selective modification of alkyne-linked peptides and proteins through the formation of arylacetylenes by a cross-coupling reaction of 6-membered ring cyclometalated gold(III) (C^N) complexes (HC^N = 2-arylpyridines) with terminal alkynes. Screening of the reaction conditions with a series of cyclometalated gold(III) complexes with phenylacetylene gave an excellent yield (up to 82%) by conducting the reaction in slightly alkaline aqueous conditions. The reaction scope was expanded to various alkynes, including alkyne-linked peptides to achieve up to >99% conversion. Using fluorescent dansyl (1l) and BODIPY (1m)-linked gold(III) complexes, alkyne-linked lysozyme has been selectively modified.


Assuntos
Ouro/química , Compostos Organometálicos/síntese química , Peptídeos/química , Proteínas/química , Alcinos/química , Catálise , Reação de Cicloadição , Estrutura Molecular , Compostos Organometálicos/química
18.
J Physiol Biochem ; 76(1): 73-83, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31823303

RESUMO

Arginine deprivation is currently being evaluated for its efficacy and safety in clinical trials aimed at combating tumors. However, the cellular signaling and molecular changes in response to such deprivation have not been systematically deciphered. Here, we evaluate the effect of arginine deprivation on human pancreatic cancer cells, with respect to their migratory and invasive potentials and their ability to undergo epithelial-mesenchymal transition (EMT). The transcription factors Snail, Slug, and Twist are regulators of EMT, as indicated by the suppression of E-cadherin and other epithelial markers and adhesion molecules. Our data indicated that arginine starvation inhibited the migration and impaired the adhesion and invasion of the pancreatic cancer cells, decreased Snail, Slug, and Twist expression, and increased E-cadherin expression without altering the expression of vimentin. It is well known that matrix metalloproteinases (MMPs) are important for the events that underlie tumor dissemination. Arginine starvation inhibited the expression of MMP-1 and MMP-9. Furthermore, the PI3K/Akt pathway was altered when the pancreatic cancer cells underwent arginine deprivation as exhibited by the decreased Akt phosphorylation. Thus, these data reveal that arginine deprivation has the potential to decrease the metastatic ability of pancreatic cancer cells.


Assuntos
Arginina/deficiência , Carcinoma Ductal Pancreático/metabolismo , Movimento Celular , Transição Epitelial-Mesenquimal , Neoplasias Pancreáticas/metabolismo , Animais , Antígenos CD/metabolismo , Caderinas/metabolismo , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Regulação para Baixo , Humanos , Metaloproteinase 1 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , Camundongos SCID , Invasividade Neoplásica , Proteínas Nucleares/metabolismo , Neoplasias Pancreáticas/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fatores de Transcrição da Família Snail/metabolismo , Proteína 1 Relacionada a Twist/metabolismo
19.
Biomed Res Int ; 2019: 1368397, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31828087

RESUMO

BACKGROUND: Urinary tract infection (UTI) is the most common bacterial infection in the world. Some cases can have serious complication as death by septic shock. With the increasing spread of multidrug-resistant bacteria, the therapeutic possibilities against the complicated UTI are exhausted, forcing the use of broad-spectrum antibiotics such as meropenem. OBJECTIVES: To evaluate the penetrating ability of meropenem to renal tissue using an enzymatic biosensor in samples of renal cortex and its correlation with plasma levels. METHOD: We conducted a descriptive study in humans with indication of kidney biopsy. Meropenem was administered 1 hour before performing the biopsy, and the concentrations of meropenem in a series of samples of plasma and renal biopsy were determined. RESULTS: Renal biopsy and plasma samples of 14 patients, 64% women with body mass index of 26.3 kg/m2 (SD ± 2.9) and estimated glomerular filtration rate of 57.5 mL/min/1.73 m2 (SD ± 44.1), were examined. Renal biopsy was done at 68.9 minutes (SD ± 20.3), and the second plasma sample was obtained at 82.1 minutes (SD ± 21.2) and the third at 149.6 minutes (SD ± 31.5). The mean kidney meropenem concentration was 3.1 µg/mL (SD ± 1.9). For each patient, a decay curve of plasma meropenem concentration was constructed. The proportion of meropenem concentrations in renal tissue and plasma at biopsy moment was 14% (SD ± 10) with an interquartile range of 5.5-20.3%. With normal renal function, meropenem can achieve a bactericidal effect towards bacteria with MIC-90 < 0.76 µg/mL in the renal parenchyma. CONCLUSIONS: Meropenem is effective to treat the most frequent uropathogens with the bactericidal effect. Nevertheless, for resistant bacteria, it is necessary to adjust the dose to achieve adequate parenchymal concentration.


Assuntos
Antibacterianos/sangue , Antibacterianos/metabolismo , Córtex Renal/metabolismo , Meropeném/sangue , Meropeném/metabolismo , Plasma/metabolismo , Antibacterianos/uso terapêutico , Infecções Bacterianas/sangue , Infecções Bacterianas/tratamento farmacológico , Infecções Bacterianas/metabolismo , Biópsia/métodos , Farmacorresistência Bacteriana Múltipla/fisiologia , Feminino , Taxa de Filtração Glomerular/fisiologia , Humanos , Masculino , Meropeném/uso terapêutico , Pessoa de Meia-Idade , Choque Séptico/sangue , Choque Séptico/tratamento farmacológico , Choque Séptico/metabolismo , Infecções Urinárias/sangue , Infecções Urinárias/tratamento farmacológico , Infecções Urinárias/metabolismo
20.
Sensors (Basel) ; 19(5)2019 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-30870966

RESUMO

PenP is a fluorescent biosensor of lactam antibiotics (LA). It is structurally derived from the mutant lactamase TEM-1 comprising the substitution E166C, where fluorescein is covalently linked to cysteine. The presence of LA in the medium produces a change in the intrinsic fluorescence level of the biosensor, and the integral of the fluorescence level over time correlates directly with the LA concentration. Previously, we have successfully used PenP to determine the concentration of lactam antibiotics in clinical samples. The use of lactamase inhibitors (LI) is a common strategy to enhance the effect of LA due to the inhibition of an important resistance mechanism of pathogenic microorganisms. Structurally, LI and LA share the common element of recognition of lactamases (the lactam ring), but they differ in the reversibility of the mechanism of interaction with said enzyme. Because the biological recognition domain of PenP is derived from a lactamase, LI is expected to interfere with the PenP detection capabilities. Surprisingly, this work provides evidence that the effect of LI is marginal in the determination of LA concentration mediated by PenP.


Assuntos
Antibacterianos/metabolismo , Técnicas Biossensoriais/métodos , beta-Lactamases/metabolismo , Lactamas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA