Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1869(7): 159524, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38857757

RESUMO

Neuroinflammation is a hallmark of several neurodegenerative disorders that has been extensively studied in recent years. Microglia, the primary immune cells of the central nervous system (CNS), are key players in this physiological process, demonstrating a remarkable adaptability in responding to various stimuli in the eye and the brain. Within the complex network of neuroinflammatory signals, the fatty acid N-ethanolamines, in particular N-arachidonylethanolamine (anandamide, AEA), emerged as crucial regulators of microglial activity under both physiological and pathological states. In this study, we interrogated for the first time the impact of the signaling of these bioactive lipids on microglial cell responses to a sub-lethal acute UVB radiation, a physical stressor responsible of microglia reactivity in either the retina or the brain. To this end, we developed an in vitro model using mouse microglial BV-2 cells. Upon 24 h of UVB exposure, BV-2 cells showed elevated oxidative stress markers and, cyclooxygenase (COX-2) expression, enhanced phagocytic and chemotactic activities, along with an altered immune profiling. Notably, UVB exposure led to a selective increase in expression and activity of fatty acid amide hydrolase (FAAH), the main enzyme responsible for degradation of fatty acid ethanolamides. Pharmacological FAAH inhibition via URB597 counteracted the effects of UVB exposure, decreasing tumor necrosis factor α (TNF-α) and nitric oxide (NO) release and reverting reactive oxidative species (ROS), interleukin-1ß (IL-1ß), and interleukin-10 (IL-10) levels to the control levels. Our findings support the potential of enhanced fatty acid amide signaling in mitigating UVB-induced cellular damage, paving the way to further exploration of these lipids in light-induced immune responses.


Assuntos
Amidoidrolases , Microglia , Raios Ultravioleta , Microglia/metabolismo , Microglia/efeitos dos fármacos , Microglia/efeitos da radiação , Animais , Camundongos , Amidoidrolases/metabolismo , Amidoidrolases/antagonistas & inibidores , Raios Ultravioleta/efeitos adversos , Linhagem Celular , Carbamatos/farmacologia , Benzamidas/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Endocanabinoides/metabolismo , Ciclo-Oxigenase 2/metabolismo , Ciclo-Oxigenase 2/genética , Ácidos Araquidônicos/metabolismo , Ácidos Araquidônicos/farmacologia , Interleucina-10/metabolismo , Alcamidas Poli-Insaturadas
2.
FASEB J ; 38(10): e23675, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38801406

RESUMO

Resolution of inflammation is the cellular and molecular process that protects from widespread and uncontrolled inflammation and restores tissue function in the aftermath of acute immune events. This process is orchestrated by specialized pro-resolving mediators (SPM), a class of bioactive lipids able to reduce immune activation and promote removal of tissue debris and apoptotic cells by macrophages. Although SPMs are the lipid class that has been best studied for its role in facilitating the resolution of self-limited inflammation, a number of other lipid signals, including endocannabinoids, also exert protective immunomodulatory effects on immune cells, including macrophages. These observations suggest that endocannabinoids may also display pro-resolving actions. Interestingly, the endocannabinoid anandamide (AEA) is not only known to bind canonical type 1 and type 2 cannabinoid receptors (CB1 and CB2) but also to engage SPM-binding receptors such as GPR18. This suggests that AEA may also contribute to the governing of resolution processes. In order to interrogate this hypothesis, we investigated the ability of AEA to induce pro-resolving responses by classically-activated primary human monocyte-derived macrophages (MoDM). We found that AEA, at nanomolar concentration, enhances efferocytosis in MoDMs in a CB2- and GPR18-dependent manner. Using lipid mediator profiling, we also observed that AEA modulates SPM profiles in these cells, including levels of resolvin (Rv)D1, RvD6, maresin (MaR)2, and RvE1 in a CB2-dependent manner. AEA treatment also modulated the gene expression of SPM enzymes involved in both the formation and further metabolism of SPM such as 5-lipoxygenase and 15-Prostaglandin dehydrogenase. Our findings show, for the first time, a direct effect of AEA on the regulation of pro-resolving pathways in human macrophages. They also provide new insights into the complex interactions between different lipid pathways in activation of pro-resolving responses contributing to the reestablishment of homeostasis in the aftermath of acute inflammation.


Assuntos
Ácidos Araquidônicos , Endocanabinoides , Macrófagos , Alcamidas Poli-Insaturadas , Receptor CB2 de Canabinoide , Receptores Acoplados a Proteínas G , Humanos , Endocanabinoides/metabolismo , Endocanabinoides/farmacologia , Receptor CB2 de Canabinoide/metabolismo , Receptor CB2 de Canabinoide/genética , Alcamidas Poli-Insaturadas/farmacologia , Alcamidas Poli-Insaturadas/metabolismo , Ácidos Araquidônicos/farmacologia , Ácidos Araquidônicos/metabolismo , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Receptores Acoplados a Proteínas G/metabolismo , Inflamação/metabolismo , Células Cultivadas , Transdução de Sinais/efeitos dos fármacos , Ácidos Docosa-Hexaenoicos/farmacologia , Ácidos Docosa-Hexaenoicos/metabolismo , Araquidonato 5-Lipoxigenase/metabolismo
3.
Cell Chem Biol ; 30(12): 1499-1501, 2023 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-38134878

RESUMO

Resolution of inflammation is the physiological process whereby endogenous pro-resolving lipids constrain inflammatory stimuli that would otherwise cause chronic inflammation. In this issue of Cell Chemical Biology, Peltner et al.1 report that the cannabis component cannabidiol induces production of pro-resolving lipids directly activating 15-lipoxygenase and inhibiting 5-lipoxygenase in human macrophages.


Assuntos
Inflamação , Macrófagos , Humanos , Lipídeos , Homeostase
4.
Front Immunol ; 14: 1148268, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37153620

RESUMO

Introduction: COVID-19 and autoinflammatory diseases, such as Adult-onset Still's Disease (AOSD), are characterized by hyperinflammation, in which it is observed massive production and uncontrolled secretion of pro-inflammatory cytokines. The specialized pro-resolving lipid mediators (SPMs) family is one the most important processes counteracting hyperinflammation inducing tissue repair and homeostasis restoration. Among SPMs, Protectin D1 (PD1) is able to exert antiviral features, at least in animal models. The aim of this study was to compare the transcriptome of peripheral blood mononuclear cells (PBMCs) from patients with AOSD and COVID-19 and to evaluate the role of PD1 on those diseases, especially in modulating macrophages polarization. Methods: This study enrolled patients with AOSD, COVID-19, and healthy donors HDs, undergoing clinical assessment and blood sample collection. Next-generation deep sequencing was performed to identify differences in PBMCs transcripts profiles. Plasma levels of PD1 were assessed by commercial ELISA kits. Monocyte-derived macrophages were polarized into M1 and M2 phenotypes. We analyzed the effect of PD1 on macrophages differentiation. At 10 days, macrophages were analyzed for surface expression of subtypes markers by flow cytometry. Cytokines production was measured in supernatants by Bio-Plex Assays. Results: In the transcriptomes from AOSD patients and COVID-19 patients, genes involved in inflammation, lipid catabolism, and monocytes activation were specifically dysregulated in AOSD and COVID-19 patients when compared to HDs. Patients affected by COVID-19, hospitalized in intensive care unit (ICU), showed higher levels of PD1 when compared to not-ICU hospitalized patients and HDs (ICU COVID-19 vs not-ICU COVID-19, p= 0.02; HDs vs ICU COVID-19, p= 0.0006). PD1 levels were increased in AOSD patients with SS ≥1 compared to patients with SS=0 (p=0.028) and HDs (p=0.048). In vitro treatment with PD1 of monocytes-derived macrophages from AOSD and COVID-19 patients induced a significant increase of M2 polarization vs control (p<0.05). Furthermore, a significant release of IL-10 and MIP-1ß from M2 macrophages was observed when compared to controls (p<0.05). Discussion: PD1 is able to induce pro-resolutory programs in both AOSD and COVID-19 increasing M2 polarization and inducing their activity. In particular, PD1-treated M2 macrophages from AOSD and COVID-19 patients increased the production of IL-10 and enhanced homeostatic restoration through MIP-1ß production.


Assuntos
COVID-19 , Doença de Still de Início Tardio , Humanos , Transcriptoma , Interleucina-10/metabolismo , Leucócitos Mononucleares/metabolismo , Quimiocina CCL4/metabolismo , COVID-19/metabolismo , Citocinas/metabolismo , Ácidos Docosa-Hexaenoicos/metabolismo , Macrófagos , Diferenciação Celular/genética
5.
Biomolecules ; 11(6)2021 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-34200023

RESUMO

Multiple sclerosis (MS) is an immune-mediated demyelinating disease of the central nervous system. MS is characterized by infiltrations of leukocytes such as T and B lymphocytes and macrophages. Macrophages have been identified as major effectors of inflammation and demyelination in both MS and its animal model, experimental autoimmune encephalomyelitis (EAE). However, the activation and heterogeneity of macrophages in MS has been poorly investigated. Thus, in this study, we evaluated M1 and M2 macrophages immunophenotype from EAE and control mice by analyzing over 30 surface and intracellular markers through polychromatic flow cytometry, qRT-PCR, and ELISA assay. We showed that M1 macrophages possessed a higher proinflammatory profile in EAE compared to control mice, since they expressed higher levels of activation/co-stimulatory markers (iNOS, CD40, and CD80) and cytokines/chemokines (IL-6, IL-12, CCL2, and CXCL10), whereas M2 lost their M2-like phenotype by showing a decreased expression of their signature markers CD206 and CCL22, as well as a concomitant upregulation of several M1 makers. Furthermore, immunization of M1 and M2 macrophages with MOG35-55 led to a significant hyperactivation of M1 and a concomitant shift of anti-inflammatory M2 to pro-inflammatory M1 macrophages. Overall, we provide evidence for a phenotypic alteration of M1/M2 balance during MS, which can be of crucial importance not only for a better understanding of the immunopathology of this neurodegenerative disease but also to potentially develop new macrophage-centered therapeutic strategies.


Assuntos
Polaridade Celular/fisiologia , Encefalomielite Autoimune Experimental/imunologia , Macrófagos/imunologia , Esclerose Múltipla/imunologia , Plasticidade Neuronal/fisiologia , Animais , Encefalomielite Autoimune Experimental/patologia , Feminino , Imunofenotipagem/métodos , Macrófagos/patologia , Camundongos , Camundongos Endogâmicos C57BL , Esclerose Múltipla/patologia
6.
Adv Drug Deliv Rev ; 159: 133-169, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32628989

RESUMO

Endogenous bioactive lipids are part of a complex network that modulates a plethora of cellular and molecular processes involved in health and disease, of which inflammation represents one of the most prominent examples. Inflammation serves as a well-conserved defence mechanism, triggered in the event of chemical, mechanical or microbial damage, that is meant to eradicate the source of damage and restore tissue function. However, excessive inflammatory signals, or impairment of pro-resolving/anti-inflammatory pathways leads to chronic inflammation, which is a hallmark of chronic pathologies. All main classes of endogenous bioactive lipids - namely eicosanoids, specialized pro-resolving lipid mediators, lysoglycerophopsholipids and endocannabinoids - have been consistently involved in the chronic inflammation that characterises pathologies such as cancer, diabetes, atherosclerosis, asthma, as well as autoimmune and neurodegenerative disorders and inflammatory bowel diseases. This review gathers the current knowledge concerning the involvement of endogenous bioactive lipids in the pathogenic processes of chronic inflammatory pathologies.


Assuntos
Inflamação/metabolismo , Metabolismo dos Lipídeos , Animais , Doença Crônica , Humanos , Inflamação/terapia , Lipídeos
7.
Front Immunol ; 9: 38, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29434586

RESUMO

Inflammation is an immune response that works as a contained fire that is pre-emptively sparked as a defensive process during infections or upon any kind of tissue insult, and that is spontaneously extinguished after elimination or termination of the damage. However, persistent and uncontrolled immune reactions act as a wildfire that promote chronic inflammation, unresolved tissue damage and, eventually, chronic diseases. A wide network of soluble mediators, among which endogenous bioactive lipids, governs all immune processes. They are secreted by basically all cells involved in inflammatory processes and constitute the crucial infrastructure that triggers, coordinates and confines inflammatory mechanisms. However, these molecules are also deeply involved in the detrimental transition from acute to chronic inflammation, be it for persistent or excessive action of pro-inflammatory lipids or for the impairment of the functions carried out by resolving ones. As a matter of fact, bioactive lipids have been linked, to date, to several chronic diseases, including rheumatoid arthritis, atherosclerosis, diabetes, cancer, inflammatory bowel disease, systemic lupus erythematosus, and multiple sclerosis. This review summarizes current knowledge on the involvement of the main classes of endogenous bioactive lipids-namely classical eicosanoids, pro-resolving lipid mediators, lysoglycerophospholipids/sphingolipids, and endocannabinoids-in the cellular and molecular mechanisms that lead to the pathogenesis of chronic disorders.


Assuntos
Eicosanoides/imunologia , Endocanabinoides/imunologia , Glicerofosfolipídeos/imunologia , Mediadores da Inflamação/imunologia , Inflamação/imunologia , Esfingolipídeos/imunologia , Doenças Autoimunes/imunologia , Doenças Autoimunes/patologia , Humanos , Inflamação/patologia
8.
Pharmacol Res ; 113(Pt A): 313-319, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27616551

RESUMO

Monocytes are believed to be involved in the immunopathogenesis of multiple sclerosis (MS). The aim of this study was to investigate their role in MS and their immunomodulation by the endocannabinoid system (ECS), a novel target for the treatment of this disease. We compared the level of cytokine production from monocytes in healthy subjects and MS patients upon stimulation with viral or bacterial Toll-like receptors (TLR) and we evaluated the ECS immunomodulatory role in these cells. Here we show that MS monocytes produced more TNF-α, IL-12 and IL-6 following activation of TLR2/4 with LPS or of TLR5 with flagellin, as opposed to TLR7/8 stimulation with R848. Furthermore AEA, the main endocannabinoid, suppressed cytokine production and release from healthy monocytes upon stimulation with both bacterial and viral TLR receptors but not in cells from MS patients, where its immunosuppressive activity was TLR7/8-dependent. Altered expression levels of key ECS members in MS monocytes paralleled these data. Our data disclose a distinct immunomodulatory effect of AEA and an alteration of AEA-related members of the ECS in monocytes from MS patients that involves viral but not bacterial TLR. These findings not only may help to better understand the role of monocytes in MS immunopathogenesis but also could be of help to exploit new endocannabinoid-based drugs that target innate immune cells.


Assuntos
Ácidos Araquidônicos/uso terapêutico , Endocanabinoides/uso terapêutico , Lipídeos/uso terapêutico , Monócitos/efeitos dos fármacos , Esclerose Múltipla/tratamento farmacológico , Alcamidas Poli-Insaturadas/uso terapêutico , Receptor 2 Toll-Like/metabolismo , Receptor 4 Toll-Like/metabolismo , Adulto , Endocanabinoides/metabolismo , Feminino , Humanos , Fatores Imunológicos/uso terapêutico , Imunossupressores/uso terapêutico , Interleucina-12/metabolismo , Interleucina-6/metabolismo , Masculino , Monócitos/metabolismo , Esclerose Múltipla/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA