Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Metabolism ; 154: 155818, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38369056

RESUMO

BACKGROUND: Cardiac glucose oxidation is decreased in heart failure with reduced ejection fraction (HFrEF), contributing to a decrease in myocardial ATP production. In contrast, circulating ketones and cardiac ketone oxidation are increased in HFrEF. Since ketones compete with glucose as a fuel source, we aimed to determine whether increasing ketone concentration both chronically with the SGLT2 inhibitor, dapagliflozin, or acutely in the perfusate has detrimental effects on cardiac glucose oxidation in HFrEF, and what effect this has on cardiac ATP production. METHODS: 8-week-old male C57BL6/N mice underwent sham or transverse aortic constriction (TAC) surgery to induce HFrEF over 3 weeks, after which TAC mice were randomized to treatment with either vehicle or the SGLT2 inhibitor, dapagliflozin (DAPA), for 4 weeks (raises blood ketones). Cardiac function was assessed by echocardiography. Cardiac energy metabolism was measured in isolated working hearts perfused with 5 mM glucose, 0.8 mM palmitate, and either 0.2 mM or 0.6 mM ß-hydroxybutyrate (ßOHB). RESULTS: TAC hearts had significantly decreased %EF compared to sham hearts, with no effect of DAPA. Glucose oxidation was significantly decreased in TAC hearts compared to sham hearts and did not decrease further in TAC hearts treated with high ßOHB or in TAC DAPA hearts, despite ßOHB oxidation rates increasing in both TAC vehicle and TAC DAPA hearts at high ßOHB concentrations. Rather, increasing ßOHB supply to the heart selectively decreased fatty acid oxidation rates. DAPA significantly increased ATP production at both ßOHB concentrations by increasing the contribution of glucose oxidation to ATP production. CONCLUSION: Therefore, increasing ketone concentration increases energy supply and ATP production in HFrEF without further impairing glucose oxidation.


Assuntos
Compostos Benzidrílicos , Glucosídeos , Insuficiência Cardíaca , Inibidores do Transportador 2 de Sódio-Glicose , Masculino , Camundongos , Animais , Insuficiência Cardíaca/metabolismo , Glucose/metabolismo , Volume Sistólico , Miocárdio/metabolismo , Oxirredução , Trifosfato de Adenosina/metabolismo , Cetonas/farmacologia , Cetonas/metabolismo
2.
ESC Heart Fail ; 8(6): 5606-5612, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34617412

RESUMO

AIMS: Recent evidence has demonstrated that ketone bodies, particularly ß-hydroxybutyrate (BHB), are beneficial to the failing heart due to their potential as an alternative energy substrate as well as their anti-inflammatory and anti-oxidative properties. Exogenous supplementation of ketones also helps prevent heart failure (HF) development in rodent models, but whether ketones can be used to treat HF remains unexplored. Herein, we investigated whether chronic supplementation of ketones is beneficial for the heart in a mouse model of established HF. METHODS AND RESULTS: To elevate circulating ketone levels, we utilized (R)-3-hydroxybutyl-(R)-3-hydroxybutyrate [ketone ester (KE)]. C57Bl/6N male mice were subjected to transverse aortic constriction (TAC) surgery. After developing HF, mice were treated with either 20% KE or vehicle via drinking water for 2 weeks. In another cohort, mice 3-4 weeks post-TAC received acute intravenous infusions of BHB or saline for 1 h and their cardiac function was measured. 20% KE significantly elevated blood BHB in mice (P < 0.01) without inducing ketoacidosis or altering other metabolic parameters. Mice with overt HF (30-45% ejection fraction) treated with 20% KE displayed significantly elevated circulating ketone levels compared with vehicle-treated mice (P < 0.05). The significant cardiac dysfunction in mice with HF continued to worsen after 2 weeks of vehicle treatment, whereas this decline was absent in KE-treated mice (mean difference 4.7% ejection fraction; P < 0.01). KE treatment also alleviated TAC-induced cardiomyocyte hypertrophy (P < 0.05) and reduced the TAC-induced elevated cardiac periostin (P < 0.05), a marker of activated fibroblasts. Cardiac fibrosis was also significantly reduced with KE treatment in TAC mice (P < 0.01). In another cohort, acute BHB infusion significantly increased the cardiac output of mice with HF (P < 0.05), providing further support that ketone therapy can be used to treat HF. CONCLUSIONS: We show that chronic treatment of exogenous ketones is of benefit to the failing heart and that chronic ketone elevation may be a therapeutic option for HF. Further investigations to elucidate the underlying mechanism(s) are warranted.


Assuntos
Insuficiência Cardíaca , Cetonas , Animais , Suplementos Nutricionais , Humanos , Cetonas/metabolismo , Cetonas/farmacologia , Cetonas/uso terapêutico , Masculino , Camundongos , Volume Sistólico , Função Ventricular Esquerda
3.
Circ Heart Fail ; 13(6): e006573, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32493060

RESUMO

BACKGROUND: Previous studies have shown beneficial effects of acute infusion of the primary ketone body, ß-hydroxybutyrate, in heart failure (HF). However, whether chronic elevations in circulating ketones are beneficial remains unknown. METHODS: To chronically elevate circulating ketones in mice, we deleted the expression of the ketolytic, rate-limiting-enzyme, SCOT (succinyl-CoA:3-ketoacid-CoA transferase 1; encoded by Oxct1), in skeletal muscle. Tamoxifen-inducible skeletal muscle-specific Oxct1Muscle-/- knockout (n=32) mice and littermate controls (wild type; WT; n=35) were subjected to transverse aortic constriction (TAC) surgery to induce HF. RESULTS: Deletion of SCOT in skeletal, but not cardiac muscle resulted in elevated concentrations of fasted circulating ß-hydroxybutyrate in knockout mice compared with WT mice (P=0.030). Five weeks following TAC, WT mice progressed to HF, whereas knockout mice with elevated fasting circulating ketones were largely protected from the TAC-induced effects observed in WT mice (ejection fraction, P=0.011; mitral E/A, P=0.012). Furthermore, knockout mice with TAC had attenuated expression of markers of sterile inflammation and macrophage infiltration, which were otherwise elevated in WT mice subjected to TAC. Lastly, addition of ß-hydroxybutyrate to isolated hearts was associated with reduced NLRP3 (nucleotide-binding domain-like receptor protein 3)-inflammasome activation, which has been previously shown to play a role in contributing to HF-induced cardiac inflammation. CONCLUSIONS: These data show that chronic elevation of circulating ketones protects against the development of HF that is associated with the ability of ß-hydroxybutyrate to directly reduce inflammation. These beneficial effects of ketones were associated with reduced cardiac NLRP3 inflammasome activation, suggesting that ketones may modulate cardiac inflammation via this mechanism.


Assuntos
Ácido 3-Hidroxibutírico/sangue , Coenzima A-Transferases/deficiência , Insuficiência Cardíaca/prevenção & controle , Miocardite/prevenção & controle , Miocárdio/enzimologia , Animais , Coenzima A-Transferases/genética , Modelos Animais de Doenças , Fibrose , Insuficiência Cardíaca/sangue , Insuficiência Cardíaca/enzimologia , Insuficiência Cardíaca/fisiopatologia , Hipertrofia Ventricular Esquerda/sangue , Hipertrofia Ventricular Esquerda/fisiopatologia , Hipertrofia Ventricular Esquerda/prevenção & controle , Inflamassomos/metabolismo , Preparação de Coração Isolado , Masculino , Camundongos Knockout , Miocardite/sangue , Miocardite/enzimologia , Miocardite/fisiopatologia , Miocárdio/patologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Regulação para Cima , Disfunção Ventricular Esquerda/sangue , Disfunção Ventricular Esquerda/fisiopatologia , Disfunção Ventricular Esquerda/prevenção & controle , Função Ventricular Esquerda , Remodelação Ventricular
4.
Cardiovasc Res ; 115(11): 1606-1616, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-30778524

RESUMO

AIMS: The failing heart is energy-starved and inefficient due to perturbations in energy metabolism. Although ketone oxidation has been shown recently to increase in the failing heart, it remains unknown whether this improves cardiac energy production or efficiency. We therefore assessed cardiac metabolism in failing hearts and determined whether increasing ketone oxidation improves cardiac energy production and efficiency. METHODS AND RESULTS: C57BL/6J mice underwent sham or transverse aortic constriction (TAC) surgery to induce pressure overload hypertrophy over 4-weeks. Isolated working hearts from these mice were perfused with radiolabelled ß-hydroxybutyrate (ßOHB), glucose, or palmitate to assess cardiac metabolism. Ejection fraction decreased by 45% in TAC mice. Failing hearts had decreased glucose oxidation while palmitate oxidation remained unchanged, resulting in a 35% decrease in energy production. Increasing ßOHB levels from 0.2 to 0.6 mM increased ketone oxidation rates from 251 ± 24 to 834 ± 116 nmol·g dry wt-1 · min-1 in TAC hearts, rates which were significantly increased compared to sham hearts and occurred without decreasing glycolysis, glucose, or palmitate oxidation rates. Therefore, the contribution of ketones to energy production in TAC hearts increased to 18% and total energy production increased by 23%. Interestingly, glucose oxidation, in parallel with total ATP production, was also significantly upregulated in hearts upon increasing ßOHB levels. However, while overall energy production increased, cardiac efficiency was not improved. CONCLUSIONS: Increasing ketone oxidation rates in failing hearts increases overall energy production without compromising glucose or fatty acid metabolism, albeit without increasing cardiac efficiency.


Assuntos
Ácido 3-Hidroxibutírico/metabolismo , Metabolismo Energético , Insuficiência Cardíaca/metabolismo , Hipertrofia Ventricular Esquerda/metabolismo , Miocárdio/metabolismo , Função Ventricular Esquerda , Acetilação , Acil-CoA Desidrogenase de Cadeia Longa/genética , Acil-CoA Desidrogenase de Cadeia Longa/metabolismo , Adaptação Fisiológica , Animais , Modelos Animais de Doenças , Ácidos Graxos/metabolismo , Glucose/metabolismo , Insuficiência Cardíaca/patologia , Insuficiência Cardíaca/fisiopatologia , Hipertrofia Ventricular Esquerda/patologia , Hipertrofia Ventricular Esquerda/fisiopatologia , Masculino , Camundongos Endogâmicos C57BL , Miocárdio/patologia , Oxirredução , Volume Sistólico
5.
Mol Med ; 24(1): 3, 2018 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30134787

RESUMO

BACKGROUND: Alterations in cardiac energy metabolism contribute to the development and severity of heart failure (HF). In severe HF, overall mitochondrial oxidative metabolism is significantly decreased resulting in a reduced energy reserve. However, despite the high prevalence of HF with preserved ejection fraction (HFpEF) in our society, it is not clear what changes in cardiac energy metabolism occur in HFpEF, and whether alterations in energy metabolism contribute to the development of contractile dysfunction. METHODS: We directly assessed overall energy metabolism during the development of HFpEF in Dahl salt-sensitive rats fed a high salt diet (HSD) for 3, 6 and 9 weeks. RESULTS: Over the course of 9 weeks, the HSD caused a progressive decrease in diastolic function (assessed by echocardiography assessment of E'/A'). This was accompanied by a progressive increase in cardiac glycolysis rates (assessed in isolated working hearts obtained at 3, 6, and 9 weeks of HSD). In contrast, the subsequent oxidation of pyruvate from glycolysis (glucose oxidation) was not altered, resulting in an uncoupling of glucose metabolism and a significant increase in proton production. Increased glucose transporter (GLUT)1 expression accompanied this elevation in glycolysis. Decreases in cardiac fatty acid oxidation and overall adenosine triphosphate (ATP) production rates were not observed in early HF, but both significantly decreased as HF progressed to HF with reduced EF (i.e. 9 weeks of HSD). CONCLUSIONS: Overall, we show that increased glycolysis is the earliest energy metabolic change that occurs during HFpEF development. The resultant increased proton production from uncoupling of glycolysis and glucose oxidation may contribute to the development of HFpEF.


Assuntos
Glucose/metabolismo , Glicólise , Insuficiência Cardíaca/metabolismo , Animais , Cardiomegalia/fisiopatologia , Coração/fisiologia , Insuficiência Cardíaca/fisiopatologia , Masculino , Miocárdio/metabolismo , Oxirredução , Ratos Endogâmicos Dahl , Cloreto de Sódio na Dieta/administração & dosagem
6.
Sci Rep ; 8(1): 2780, 2018 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-29426916

RESUMO

Numerous experimental studies have supported the evidence that 2-methoxyestradiol (2 ME) is a biologically active metabolite that mediates multiple effects on the cardiovascular system, largely independent of the estrogen receptor. 2 ME is a major cytochrome P450 1B1 (CYP1B1) metabolite and has been reported to have vasoprotective and anti-inflammatory actions. However, whether 2 ME would prevent cardiac hypertrophy induced by abdominal aortic constriction (AAC) has not been investigated yet. Therefore, the overall objectives of the present study were to elucidate the potential antihypertrophic effect of 2 ME and explore the mechanism(s) involved. Our results showed that 2 ME significantly inhibited AAC-induced left ventricular hypertrophy using echocardiography. The antihypertrophic effect of 2 ME was associated with a significant inhibition of CYP1B1 and mid-chain hydroxyeicosatetraenoic acids. Based on proteomics data, the protective effect of 2 ME is linked to the induction of antioxidant and anti-inflammatory proteins in addition to the modulation of proteins involved in myocardial energy metabolism. In vitro, 2 ME has shown a direct antihypertrophic effect through mitogen-activated protein kinases- and nuclear factor-κB-dependent mechanisms. The present work shows a strong evidence that 2 ME protects against left ventricular hypertrophy. Our data suggest the potential of repurposing 2 ME as a selective CYP1B1 inhibitor for the treatment of heart failure.


Assuntos
2-Metoxiestradiol/farmacologia , Citocromo P-450 CYP1B1 , Hipertrofia Ventricular Esquerda/tratamento farmacológico , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Substâncias Protetoras/farmacologia , Transdução de Sinais/efeitos dos fármacos , Animais , Linhagem Celular , Citocromo P-450 CYP1B1/antagonistas & inibidores , Citocromo P-450 CYP1B1/metabolismo , Humanos , Ácidos Hidroxieicosatetraenoicos/metabolismo , Masculino , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Miócitos Cardíacos/citologia , NF-kappa B/metabolismo , Ratos , Ratos Sprague-Dawley
7.
Am J Physiol Heart Circ Physiol ; 312(4): H842-H853, 2017 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-28159807

RESUMO

We investigated whether treatment of mice with established pressure overload-induced heart failure (HF) with the naturally occurring polyphenol resveratrol could improve functional symptoms of clinical HF such as fatigue and exercise intolerance. C57Bl/6N mice were subjected to either sham or transverse aortic constriction surgery to induce HF. Three weeks postsurgery, a cohort of mice with established HF (%ejection fraction <45) was administered resveratrol (~450 mg·kg-1·day-1) or vehicle for 2 wk. Although the percent ejection fraction was similar between both groups of HF mice, those mice treated with resveratrol had increased total physical activity levels and exercise capacity. Resveratrol treatment was associated with altered gut microbiota composition, increased skeletal muscle insulin sensitivity, a switch toward greater whole body glucose utilization, and increased basal metabolic rates. Although muscle mass and strength were not different between groups, mice with HF had significant declines in basal and ADP-stimulated O2 consumption in isolated skeletal muscle fibers compared with sham mice, which was completely normalized by resveratrol treatment. Overall, resveratrol treatment of mice with established HF enhances exercise performance, which is associated with alterations in whole body and skeletal muscle energy metabolism. Thus, our preclinical data suggest that resveratrol supplementation may effectively improve fatigue and exercise intolerance in HF patients.NEW & NOTEWORTHY Resveratrol treatment of mice with heart failure leads to enhanced exercise performance that is associated with altered gut microbiota composition, increased whole body glucose utilization, and enhanced skeletal muscle metabolism and function. Together, these preclinical data suggest that resveratrol supplementation may effectively improve fatigue and exercise intolerance in heart failure via these mechanisms.


Assuntos
Antioxidantes/farmacologia , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/fisiopatologia , Músculo Esquelético/efeitos dos fármacos , Esforço Físico/efeitos dos fármacos , Estilbenos/farmacologia , Animais , Metabolismo Energético/efeitos dos fármacos , Tolerância ao Exercício/efeitos dos fármacos , Fadiga/prevenção & controle , Glucose/metabolismo , Resistência à Insulina , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microbiota , Oxirredução , Consumo de Oxigênio/efeitos dos fármacos , Condicionamento Físico Animal , Resveratrol , Volume Sistólico/efeitos dos fármacos
8.
Am J Physiol Heart Circ Physiol ; 312(3): H552-H560, 2017 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-28062415

RESUMO

Previous studies have shown that loss of CD36 protects the heart from dysfunction induced by pressure overload in the presence of diet-induced insulin resistance and/or obesity. The beneficial effects of CD36 ablation in this context are mediated by preventing excessive cardiac fatty acid (FA) entry and reducing lipotoxic injury. However, whether or not the loss of CD36 can prevent pressure overload-induced cardiac dysfunction in the absence of chronic exposure to high circulating FAs is presently unknown. To address this, we utilized a tamoxifen-inducible cardiomyocyte-specific CD36 knockout (icCD36KO) mouse and genetically deleted CD36 in adulthood. Control mice (CD36 floxed/floxed mice) and icCD36KO mice were treated with tamoxifen and subsequently subjected to transverse aortic constriction (TAC) surgery to generate pressure overload-induced cardiac hypertrophy. Consistent with CD36 mediating a significant proportion of FA entry into the cardiomyocyte and subsequent FA utilization for ATP production, hearts from icCD36KO mice were metabolically inefficient and displayed signs of energetic stress, including activation of the energetic stress kinase, AMPK. In addition, impaired energetics in icCD36KO mice contributed to a rapid progression from compensated hypertrophy to heart failure. However, icCD36KO mice fed a medium-chain FA diet, whereby medium-chain FAs can enter into the cardiomyocyte independent from CD36, were protected from TAC-induced heart failure. Together these data suggest that limiting FA uptake and partial inhibition of FA oxidation in the heart via CD36 ablation may be detrimental for the compensated hypertrophic heart in the absence of sufficiently elevated circulating FAs to provide an adequate energy source.NEW & NOTEWORTHY Limiting CD36-mediated fatty acid uptake in the setting of obesity and/or insulin resistance protects the heart from cardiac hypertrophy and dysfunction. However, cardiomyocyte-specific CD36 ablation in the absence of elevated circulating fatty acid levels accelerates the progression of pressure overload-induced cardiac hypertrophy to systolic heart failure.


Assuntos
Antígenos CD36/genética , Cardiomegalia/genética , Cardiomegalia/patologia , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/patologia , Miócitos Cardíacos/patologia , Proteínas Quinases Ativadas por AMP/metabolismo , Trifosfato de Adenosina/biossíntese , Animais , Cardiomegalia/induzido quimicamente , Progressão da Doença , Metabolismo Energético/genética , Antagonistas de Estrogênios , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miocárdio/patologia , Tamoxifeno , Triglicerídeos/sangue
9.
JACC Basic Transl Sci ; 2(4): 347-354, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30062155

RESUMO

This study sought to determine whether the sodium/glucose cotransporter 2 (SGLT2) inhibitor empagliflozin improved heart failure (HF) outcomes in nondiabetic mice. The EMPA-REG OUTCOME (Empagliflozin, Cardiovascular Outcome Event Trial in Type 2 Diabetes Mellitus Patients) trial demonstrated that empagliflozin markedly prevented HF and cardiovascular death in subjects with diabetes. However, despite ongoing clinical trials in HF patients without type 2 diabetes, there are no objective and translational data to support an effect of SGLT2 inhibitors on cardiac structure and function, particularly in the absence of diabetes and in the setting of established HF. Male C57Bl/6 mice were subjected to either sham or transverse aortic constriction surgery to induce HF. Following surgery, mice that progressed to HF received either vehicle or empagliflozin for 2 weeks. Cardiac function was then assessed in vivo using echocardiography and ex vivo using isolated working hearts. Although vehicle-treated HF mice experienced a progressive worsening of cardiac function over the 2-week treatment period, this decline was blunted in empagliflozin-treated HF mice. Treatment allocation to empagliflozin resulted in an improvement in cardiac systolic function, with no significant changes in cardiac remodeling or diastolic dysfunction. Moreover, isolated hearts from HF mice treated with empagliflozin displayed significantly improved ex vivo cardiac function compared to those in vehicle-treated controls. Empagliflozin treatment of nondiabetic mice with established HF blunts the decline in cardiac function both in vivo and ex vivo, independent of diabetes. These data provide important basic and translational clues to support the evaluation of SGLT2 inhibitors as a treatment strategy in a broad range of patients with established HF.

10.
Cardiovasc Res ; 110(2): 249-57, 2016 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-26968698

RESUMO

AIMS: Impaired cardiac substrate metabolism plays an important role in heart failure (HF) pathogenesis. Since many of these metabolic changes occur at the transcriptional level of metabolic enzymes, it is possible that this loss of metabolic flexibility is permanent and thus contributes to worsening cardiac function and/or prevents the full regression of HF upon treatment. However, despite the importance of cardiac energetics in HF, it remains unclear whether these metabolic changes can be normalized. In the current study, we investigated whether a reversal of an elevated aortic afterload in mice with severe HF would result in the recovery of cardiac function, substrate metabolism, and transcriptional reprogramming as well as determined the temporal relationship of these changes. METHODS AND RESULTS: Male C57Bl/6 mice were subjected to either Sham or transverse aortic constriction (TAC) surgery to induce HF. After HF development, mice with severe HF (% ejection fraction < 30) underwent a second surgery to remove the aortic constriction (debanding, DB). Three weeks following DB, there was a near complete recovery of systolic and diastolic function, and gene expression of several markers for hypertrophy/HF were returned to values observed in healthy controls. Interestingly, pressure-overload-induced left ventricular hypertrophy (LVH) and cardiac substrate metabolism were restored at 1-week post-DB, which preceded functional recovery. CONCLUSIONS: The regression of severe HF is associated with early and dramatic improvements in cardiac energy metabolism and LVH normalization that precede restored cardiac function, suggesting that metabolic and structural improvements may be critical determinants for functional recovery.


Assuntos
Insuficiência Cardíaca/fisiopatologia , Hipertrofia Ventricular Esquerda/fisiopatologia , Função Ventricular Esquerda/fisiologia , Remodelação Ventricular , Animais , Aorta/cirurgia , Metabolismo Energético/fisiologia , Masculino , Camundongos Endogâmicos C57BL , Modelos Animais
11.
Circ Heart Fail ; 8(1): 128-37, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25394648

RESUMO

BACKGROUND: Although resveratrol has multiple beneficial cardiovascular effects, whether resveratrol can be used for the treatment and management of heart failure (HF) remains unclear. In the current study, we determined whether resveratrol treatment of mice with established HF could lessen the detrimental phenotype associated with pressure-overload-induced HF and identified physiological and molecular mechanisms contributing to this. METHODS AND RESULTS: C57Bl/6 mice were subjected to either sham or transverse aortic constriction surgery to induce HF. Three weeks post surgery, a cohort of mice with established HF (% ejection fraction <45) was administered resveratrol (≈320 mg/kg per day). Despite a lack of improvement in ejection fraction, resveratrol treatment significantly increased median survival of mice with HF, lessened cardiac fibrosis, reduced gene expression of several disease markers for hypertrophy and extracellular matrix remodeling that were upregulated in HF, promoted beneficial remodeling, and improved diastolic function. Resveratrol treatment of mice with established HF also restored the levels of mitochondrial oxidative phosphorylation complexes, restored cardiac AMP-activated protein kinase activation, and improved myocardial insulin sensitivity to promote glucose metabolism and significantly improved myocardial energetic status. Finally, noncardiac symptoms of HF, such as peripheral insulin sensitivity, vascular function, and physical activity, were improved with resveratrol treatment. CONCLUSIONS: Resveratrol treatment of mice with established HF lessens the severity of the HF phenotype by lessening cardiac fibrosis, improving molecular and structural remodeling of the heart, and enhancing diastolic function, vascular function, and energy metabolism.


Assuntos
Metabolismo Energético/efeitos dos fármacos , Insuficiência Cardíaca Diastólica/tratamento farmacológico , Contração Miocárdica/efeitos dos fármacos , Miocárdio/metabolismo , Estilbenos/uso terapêutico , Função Ventricular Esquerda/efeitos dos fármacos , Remodelação Ventricular/fisiologia , Animais , Modelos Animais de Doenças , Insuficiência Cardíaca Diastólica/metabolismo , Insuficiência Cardíaca Diastólica/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Resveratrol , Ribonucleotídeo Redutases/antagonistas & inibidores , Volume Sistólico/efeitos dos fármacos , Vasodilatadores/uso terapêutico , Remodelação Ventricular/efeitos dos fármacos
12.
Biochim Biophys Acta ; 1832(10): 1723-33, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23707558

RESUMO

Resveratrol (RESV) is a polyphenol with pleiotropic effects that include reduction of oxidative stress and increased vascular nitric oxide (NO) production. However, whether or not RESV can prevent rises in blood pressure (BP) is controversial and remains to be firmly established. The purpose of this study was to determine whether RESV attenuates elevated BP and subsequent adaptive cardiac hypertrophy and to better understand the mechanisms involved. The spontaneously hypertensive rat (SHR) and the angiotensin (Ang)-II infused mouse were used as hypertensive models. Compared to a standard control diet, consumption of diets containing RESV by SHRs and Ang-II hypertensive mice, markedly prevented rises in systolic BP. In addition, flow-mediated vasodilation was significantly improved by RESV in SHRs. RESV also reduced serum and cardiac levels of the lipid peroxidation by-product, 4-hydroxy-2-nonenal in the hypertensive rodents and inhibited the production of superoxide in human-derived endothelial cells. Analysis of mesenteric arteries from SHRs and Ang-II infused mice demonstrated that RESV increased endothelial NO synthase (eNOS) phosphorylation by enhancing the LKB1/adenosine monophosphate (AMP)-activated protein kinase (AMPK) signal transduction pathway. Moreover, RESV reduced hypertrophic growth of the myocardium through reduced hemodynamic load and inhibition of the p70 S6 kinase pro-hypertrophic signaling cascade. Overall, we show that high dose RESV reduces oxidative stress, improves vascular function, attenuates high BP and prevents cardiac hypertrophy through the preservation of the LKB1-AMPK-eNOS signaling axis.


Assuntos
Cardiomegalia/prevenção & controle , Hipertensão/prevenção & controle , Estilbenos/farmacologia , Animais , Pressão Sanguínea/efeitos dos fármacos , Células Cultivadas , Humanos , Camundongos , Ratos , Resveratrol
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA