Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-39264232

RESUMO

Most breast implants currently used in both reconstructive and cosmetic surgery have a silicone outer shell, which, despite much progress, remains susceptible to mechanical failure, infection, and foreign body response. This study shows that the durability and biocompatibility of breast implant-grade silicone can be enhanced by incorporating carbon nanomaterials of sp2 and sp3 hybridization into the polymer matrix and onto its surface. Plasma treatment of the implant surface can be used to modify platelet adhesion and activation to prevent thrombosis, postoperative infection, and inflammation disorders. The addition of 0.8% graphene flakes resulted in an increase in mechanical strength by 64% and rupture strength by around 77% when compared to pure silicone, whereas when nanodiamond (ND) was used as the additive, the mechanical strength was increased by 19.4% and rupture strength by 37.5%. Composites with a partially embedded surface layer of either graphene or ND showed superior antimicrobial activity and biocompatibility compared to pure silicone. All composite materials were able to sustain the attachment and growth of human dermal fibroblast, with the preferred growth noted on ND-coated surfaces when compared to graphene-coated surfaces. Exposure of these materials to hydrogen plasma for 5, 10, and 20 s led to substantially reduced platelet attachment on the surfaces. Hydrogen-treated pure silicone showed a decrease in platelet attachment for samples treated for 5-20 s, whereas silicone composite showed an almost threefold decrease in platelet attachment for the same plasma treatment times. The absence of platelet activation on the surface of composite materials suggests a significant improvement in hemocompatibility of the material.

2.
Soft Matter ; 20(14): 3082-3096, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38315084

RESUMO

Using three common polymeric materials (polypropylene (PP), polytetrafluoroethylene (PTFE) and polycaprolactone (PCL)), a standard oxygen-plasma treatment and atomic force microscopy (AFM), we performed a scaling analysis of the modified surfaces yielding effective Hurst exponents (H ≃ 0.77 ± 0.02 (PP), ≃0.75 ± 0.02 (PTFE), and ≃0.83 ± 0.02 (PCL)), for the one-dimensional profiles, corresponding to the transversal sections of the surface, by averaging over all possible profiles. The surface fractal dimensions are given by ds = 3 - H, corresponding to ds ≃ 2.23, 2.25, and 2.17, respectively. We present a simple method to obtain the surface area from the AFM images stored in a matrix of 512 × 512 pixels. We show that the considerable increase found in the surface areas of the treated samples w.r.t. to the non-treated ones (43% for PP, 85% for PTFE, and 25% for PCL, with errors of about 2.5% on samples of 2 µm × 2 µm) is consistent with the observed increase in the length scales of the fractal regime to determine H, typically by a factor of about 2, extending from a few to hundreds of nanometres. We stipulate that the intrinsic roughness already present in the original non-treated material surfaces may serve as 'fractal' seeds undergoing significant height fluctuations during plasma treatment, suggesting a pathway for the future development of advanced material interfaces with large surface areas at the nanoscale.

3.
Molecules ; 27(18)2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-36144688

RESUMO

Scaling up the production of functional reduced graphene oxide (rGO) and its composites requires the use of low-cost, simple, and sustainable synthesis methods, and renewable feedstocks. In this study, silver oxide-decorated rGO (AgxO-rGO) composites were prepared by open-air combustion of mustard oil, essential oil-containing cooking oil commercially produced from the seeds of Brassica juncea. Silver oxide (AgxO) nanoparticles (NPs) were synthesized using Coleus aromaticus leaf extract as a reducing agent. Formation of mustard seed rGO and AgxO NPs was confirmed by UV-visible characteristic peaks at 258 nm and 444 nm, respectively. rGO had a flake-like morphology and a crystalline structure, with Raman spectra showing clear D and G bands with an ID/IG ratio of 0.992, confirming the fewer defects in the as-prepared mustard oil-derived rGO (M-rGO). The rGO-AgxO composite showed a degradation efficiency of 81.9% with a rate constant k-1 of 0.9506 min-1 for the sodium salt of benzidinediazo-bis-1-naphthylamine-4-sulfonic acid (known as the azo dye Congo Red) in an aqueous solution under visible light irradiation. The composite also showed some antimicrobial activity against Klebsilla pneomoniae, Escherichiacoli, and Staphylococcusaureus bacterial cells, with inhibition zones of ~15, 18, and 14 mm, respectively, for a concentration of 300 µg/mL. At 600 µg/mL concentration, the composite also showed moderate scavenging activity for 2,2-diphenyl-1-picrylhydrazyl of ~30.6%, with significantly lower activities measured for AgxO (at ~18.1%) and rGO (~8%) when compared to control.


Assuntos
Anti-Infecciosos , Grafite , Nanocompostos , Óleos Voláteis , Antioxidantes/farmacologia , Compostos Azo , Catálise , Vermelho Congo , Grafite/química , Mostardeira , Nanocompostos/química , Óxidos , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Óleos de Plantas , Substâncias Redutoras , Compostos de Prata , Sódio
4.
Molecules ; 26(23)2021 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-34885713

RESUMO

Plasma polymer coatings fabricated from Melaleuca alternifolia essential oil and its derivatives have been previously shown to reduce the extent of microbial adhesion on titanium, polymers, and other implantable materials used in dentistry. Previous studies have shown these coatings to maintain their performance under standard operating conditions; however, when used in e.g., a dental implant, these coatings may inadvertently become subject to in situ cleaning treatments, such as those using an atmospheric pressure plasma jet, a promising tool for the effective in situ removal of biofilms from tissues and implant surfaces. Here, we investigated the effect of such an exposure on the antimicrobial performance of the Melaleuca alternifolia polymer coating. It was found that direct exposure of the polymer coating surface to the jet for periods less than 60 s was sufficient to induce changes in its surface chemistry and topography, affecting its ability to retard subsequent microbial attachment. The exact effect of the jet exposure depended on the chemistry of the polymer coating, the length of plasma treatment, cell type, and incubation conditions. The change in the antimicrobial activity for polymer coatings fabricated at powers of 20-30 W was not statistically significant due to their limited baseline bioactivity. Interestingly, the bioactivity of polymer coatings fabricated at 10 and 15 W against Staphylococcus aureus cells was temporarily improved after the treatment, which could be attributed to the generation of loosely attached bioactive fragments on the treated surface, resulting in an increase in the dose of the bioactive agents being eluted by the surface. Attachment and proliferation of Pseudomonas aeruginosa cells and mixed cultures were less affected by changes in the bioactivity profile of the surface. The sensitivity of the cells to the change imparted by the jet treatment was also found to be dependent on their origin culture, with mature biofilm-derived P. aeruginosa bacterial cells showing a greater ability to colonize the surface when compared to its planktonic broth-grown counterpart. The presence of plasma-generated reactive oxygen and nitrogen species in the culture media was also found to enhance the bioactivity of polymer coatings fabricated at power levels of 10 and 15 W, due to a synergistic effect arising from simultaneous exposure of cells to reactive oxygen and nitrogen species (RONS) and eluted bioactive fragments. These results suggest that it is important to consider the possible implications of inadvertent changes in the properties and performance of plasma polymer coatings as a result of exposure to in situ decontamination, to both prevent suboptimal performance and to exploit possible synergies that may arise for some polymer coating-surface treatment combinations.


Assuntos
Antibacterianos/química , Materiais Revestidos Biocompatíveis/química , Melaleuca/química , Óleos Voláteis/química , Antibacterianos/farmacologia , Pressão Atmosférica , Materiais Revestidos Biocompatíveis/farmacologia , Implantes Dentários/microbiologia , Humanos , Óleos Voláteis/farmacologia , Gases em Plasma , Polímeros/química , Próteses e Implantes , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/patogenicidade , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/patogenicidade , Titânio/química
5.
Sci Rep ; 7(1): 12163, 2017 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-28939877

RESUMO

Experiments on plasma-liquid interaction and formation of thinly stratified self-organized patterns at plasma-liquid interface have revealed a nontrivial cancer-inhibiting capability of liquid media treated at self-organized interfacial patterns. A pronounced cancer suppressing activity towards at least two cancer cells, breast cancer MDA-MB-231 and human glioblastoma U87 cancer lines, was demonstrated in vitro. After a short treatment at the thinly stratified self-organized plasma-liquid interface pattern, the cancer inhibiting media demonstrate pronounced suppressing and apoptotic activities towards tumor cells. Importantly, this would have been impossible without interfacial stratification of plasma jet to thin (of several µm) current filaments, which plays a pivotal role in building up the cancer inhibition properties. Furthermore, thinly stratified, self-organized interfacial discharge is capable to efficiently control the ROS and RNS concentrations in the cancer-inhibiting media. In particular, abnormal ROS/RNS ratios are not achievable in discharges since they do not form stratified thin-filament patterns. Our findings could be tremendously important for understanding the cancer proliferation problem and hence, the potential of this approach in tackling the challenges of high cancer-induced mortality should be explored.


Assuntos
Apoptose , Neoplasias da Mama/terapia , Glioblastoma/terapia , Gases em Plasma/uso terapêutico , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Feminino , Glioblastoma/patologia , Humanos , Gases em Plasma/química
6.
Genes Dev ; 26(6): 548-53, 2012 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-22426532

RESUMO

The master regulator of stationary phase in Escherichia coli, RpoS, responds to carbon availability through changes in stability, but the individual steps in the pathway are unknown. Here we systematically block key steps of glycolysis and the citric acid cycle and monitor the effect on RpoS degradation in vivo. Nutrient upshifts trigger RpoS degradation independently of protein synthesis by activating metabolic pathways that generate small energy molecules. Using metabolic mutants and inhibitors, we show that ATP, but not GTP or NADH, is necessary for RpoS degradation. In vitro reconstitution assays directly demonstrate that ClpXP fails to degrade RpoS, but not other proteins, at low ATP hydrolysis rates. These data suggest that cellular ATP levels directly control RpoS stability.


Assuntos
Trifosfato de Adenosina/metabolismo , Proteínas de Bactérias/metabolismo , Escherichia coli/metabolismo , Proteólise , Fator sigma/metabolismo , Guanosina Trifosfato/metabolismo , NAD/metabolismo , Estabilidade Proteica
7.
Chem Biol ; 16(6): 605-12, 2009 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-19549599

RESUMO

In the AAA+ ClpXP protease, ClpX uses repeated cycles of ATP hydrolysis to pull native proteins apart and to translocate the denatured polypeptide into ClpP for degradation. Here, we probe polypeptide features important for translocation. ClpXP degrades diverse synthetic peptide substrates despite major differences in side-chain chirality, size, and polarity. Moreover, translocation occurs without a peptide -NH and with 10 methylenes between successive peptide bonds. Pulling on homopolymeric tracts of glycine, proline, and lysine also allows efficient ClpXP degradation of a stably folded protein. Thus, minimal chemical features of a polypeptide chain are sufficient for translocation and protein unfolding by the ClpX machine. These results suggest that the translocation pore of ClpX is highly elastic, allowing interactions with a wide range of chemical groups, a feature likely to be shared by many AAA+ unfoldases.


Assuntos
Trifosfato de Adenosina/metabolismo , Endopeptidase Clp/metabolismo , Proteínas de Escherichia coli/metabolismo , Peptídeos/metabolismo , ATPases Associadas a Diversas Atividades Celulares , Adenosina Trifosfatases/metabolismo , Adenosina Trifosfatases/fisiologia , Sequência de Aminoácidos , Sítios de Ligação , Endopeptidase Clp/fisiologia , Proteínas de Escherichia coli/fisiologia , Hidrólise , Cinética , Chaperonas Moleculares/metabolismo , Chaperonas Moleculares/fisiologia , Ligação Proteica , Dobramento de Proteína , Especificidade por Substrato
8.
Genes Dev ; 18(18): 2292-301, 2004 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-15371343

RESUMO

Adaptor proteins help proteases modulate substrate choice, ensuring that appropriate proteins are degraded at the proper time and place. SspB is an adaptor that delivers ssrA-tagged proteins to the AAA+ protease ClpXP for degradation. To identify new SspB-regulated substrates, we examined proteins captured by ClpXP(trap) in sspB(+) but not sspB(-) strains. RseA(1-108), a fragment of a transmembrane protein that regulates the extracytoplasmic-stress response, fits this criterion. In response to stress, RseA is cleaved on each side of the membrane and is released as a cytoplasmic fragment that remains bound in an inhibitory complex with the sigma(E) transcription factor. Trapping experiments together with biochemical studies show that ClpXP functions in concert with SspB to efficiently recognize and degrade RseA(1-108), and thereby releases sigma(E). Genetic studies confirm that ClpX and SspB participate in induction of the sigma(E) regulon in vivo, acting at the final step of an activating proteolytic cascade. Surprisingly, the SspB-recognition sequence in RseA(1-108) is unrelated to its binding sequence in the ssrA tag. Thus, these experiments elucidate the final steps in induction of the extracytoplasmic stress response and reveal that SspB delivers a broader spectrum of substrates to ClpXP than has been recognized.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Transporte/metabolismo , Proteínas de Escherichia coli/metabolismo , Serina Endopeptidases/metabolismo , Adenosina Trifosfatases/genética , Sequência de Aminoácidos , Proteínas de Transporte/genética , Citoplasma/metabolismo , Endopeptidase Clp , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Dados de Sequência Molecular , Fragmentos de Peptídeos/metabolismo , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , Regulon , Serina Endopeptidases/genética , Fator sigma/genética , Fator sigma/metabolismo , Especificidade por Substrato , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
9.
Cell ; 119(1): 9-18, 2004 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-15454077

RESUMO

Machines of protein destruction-including energy-dependent proteases and disassembly chaperones of the AAA(+) ATPase family-function in all kingdoms of life to sculpt the cellular proteome, ensuring that unnecessary and dangerous proteins are eliminated and biological responses to environmental change are rapidly and properly regulated. Exciting progress has been made in understanding how AAA(+) machines recognize specific proteins as targets and then carry out ATP-dependent dismantling of the tertiary and/or quaternary structure of these molecules during the processes of protein degradation and the disassembly of macromolecular complexes.


Assuntos
Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , Peptídeo Hidrolases/metabolismo , Proteoma/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/genética , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Adenosina Trifosfatases/genética , Animais , Sítios de Ligação/fisiologia , Humanos , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Conformação Molecular , Peptídeo Hidrolases/genética , Proteoma/genética
10.
Mol Cell ; 12(2): 355-63, 2003 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-14536075

RESUMO

SspB dimers bind proteins bearing the ssrA-degradation tag and stimulate their degradation by the ClpXP protease. Here, E. coli SspB is shown to contain a dimeric substrate binding domain of 110-120 N-terminal residues, which binds ssrA-tagged substrates but does not stimulate their degradation. The C-terminal 40-50 residues of SspB are unstructured but are required for SspB to form substrate-delivery complexes with ClpXP. A synthetic peptide containing the 10 C-terminal residues of SspB binds ClpX, stimulates its ATPase activity, and prevents SspB-mediated delivery of GFP-ssrA for ClpXP degradation. This tripartite structure--an ssrA-tag binding and dimerization domain, a flexible linker, and a short peptide module that docks with ClpX--allows SspB to deliver tagged substrates to ClpXP without interfering with their denaturation or degradation.


Assuntos
Adenosina Trifosfatases/química , Adesinas Bacterianas/química , Proteínas de Escherichia coli , Serina Endopeptidases/química , ATPases Associadas a Diversas Atividades Celulares , Trifosfato de Adenosina/metabolismo , Adesinas Bacterianas/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/fisiologia , Sítios de Ligação , Dimerização , Relação Dose-Resposta a Droga , Endopeptidase Clp , Escherichia coli/metabolismo , Proteínas de Fluorescência Verde , Hidrólise , Proteínas Luminescentes/metabolismo , Modelos Biológicos , Chaperonas Moleculares , Dados de Sequência Molecular , Mutação , Ligação Proteica , Estrutura Terciária de Proteína , RNA Bacteriano/metabolismo , Homologia de Sequência de Aminoácidos , Especificidade por Substrato
11.
Mol Cell ; 12(2): 365-72, 2003 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-14536076

RESUMO

Substrate selection by AAA+ ATPases that function to unfold proteins or alter protein conformation is often regulated by delivery or adaptor proteins. SspB is a protein dimer that binds to the ssrA degradation tag and delivers proteins bearing this tag to ClpXP, an AAA+ protease, for degradation. Here, we describe the structure of the peptide binding domain of H. influenzae SspB in complex with an ssrA peptide at 1.6 A resolution. The ssrA peptides are bound in well-defined clefts located at the extreme ends of the SspB homodimer. SspB contacts residues within the N-terminal and central regions of the 11 residue ssrA tag but leaves the C-terminal residues exposed and positioned to dock with ClpX. This structure, taken together with biochemical analysis of SspB, suggests mechanisms by which proteins like SspB escort substrates to AAA+ ATPases and enhance the specificity and affinity of target recognition.


Assuntos
Adenosina Trifosfatases/química , Peptídeos/química , Serina Endopeptidases/química , Adenosina Trifosfatases/metabolismo , Cristalografia por Raios X , Dimerização , Endopeptidase Clp , Haemophilus influenzae/enzimologia , Modelos Biológicos , Modelos Moleculares , Família Multigênica , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , RNA Bacteriano/química
12.
Chem Biol ; 9(11): 1237-45, 2002 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-12445774

RESUMO

SspB, a specificity factor for the ATP-dependent ClpXP protease, stimulates proteolysis of protein substrates bearing the ssrA degradation tag. The SspB protein is shown here to form a stable homodimer with two independent binding sites for ssrA-tagged proteins or peptides. SspB by itself binds to ClpX and stimulates the ATPase activity of this enzyme. In the presence of ATPgammaS, a ternary complex of SspB, GFP-ssrA, and the ClpX ATPase was sufficiently stable to isolate by gel-filtration or ion-exchange chromatography. This complex consists of one SspB dimer, two molecules of GFP-ssrA, and one ClpX hexamer. SspB dimers do not commit bound substrates to ClpXP degradation but increase the affinity and cooperativity of binding of ssrA-tagged substrates to ClpX, facilitating enhanced degradation at low substrate concentrations.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Transporte/metabolismo , Fator de Especificidade de Clivagem e Poliadenilação/metabolismo , Proteínas de Escherichia coli/metabolismo , Serina Endopeptidases/metabolismo , ATPases Associadas a Diversas Atividades Celulares , Dimerização , Endopeptidase Clp , Proteínas de Fluorescência Verde , Proteínas Luminescentes , Chaperonas Moleculares , Ligação Proteica , Proteínas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA