Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cancer Res Commun ; 3(12): 2560-2571, 2023 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-38019104

RESUMO

Clonal hematopoiesis (CH) at time of autologous stem cell transplant (ASCT) has been shown to be associated with decreased overall survival (OS) and progression-free survival (PFS) in patients with multiple myeloma not receiving immunomodulatory drugs (IMiD). However, the significance of CH in newly diagnosed patients, including transplant ineligible patients, and its effect on clonal evolution during multiple myeloma therapy in the era of novel agents, has not been well studied. Using our new algorithm to differentiate tumor and germline mutations from CH, we detected CH in approximately 10% of 986 patients with multiple myeloma from the Clinical Outcomes in MM to Personal Assessment of Genetic Profile (CoMMpass) cohort (40/529 transplanted and 59/457 non-transplanted patients). CH was associated with increased age, risk of recurrent bacterial infections and cardiovascular disease. CH at time of multiple myeloma diagnosis was not associated with inferior OS or PFS regardless of undergoing ASCT, and all patients benefited from IMiD-based therapies, irrespective of the presence of CH. Serial sampling of 52 patients revealed the emergence of CH over a median of 3 years of treatment, increasing its prevalence to 25%, mostly with DNMT3A mutations. SIGNIFICANCE: Using our algorithm to differentiate tumor and germline mutations from CH mutations, we detected CH in approximately 10% of patients with newly diagnosed myeloma, including both transplant eligible and ineligible patients. Receiving IMiDs improved outcomes irrespective of CH status, but the prevalence of CH significantly rose throughout myeloma-directed therapy.


Assuntos
Mieloma Múltiplo , Humanos , Mieloma Múltiplo/diagnóstico , Hematopoiese Clonal , Transplante Autólogo , Transplante de Células-Tronco , Intervalo Livre de Progressão
2.
Sci Transl Med ; 14(649): eaba4380, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35704596

RESUMO

The majority of JAK2V617F-negative myeloproliferative neoplasms (MPNs) have disease-initiating frameshift mutations in calreticulin (CALR), resulting in a common carboxyl-terminal mutant fragment (CALRMUT), representing an attractive source of neoantigens for cancer vaccines. However, studies have shown that CALRMUT-specific T cells are rare in patients with CALRMUT MPN for unknown reasons. We examined class I major histocompatibility complex (MHC-I) allele frequencies in patients with CALRMUT MPN from two independent cohorts. We observed that MHC-I alleles that present CALRMUT neoepitopes with high affinity are underrepresented in patients with CALRMUT MPN. We speculated that this was due to an increased chance of immune-mediated tumor rejection by individuals expressing one of these MHC-I alleles such that the disease never clinically manifested. As a consequence of this MHC-I allele restriction, we reasoned that patients with CALRMUT MPN would not efficiently respond to a CALRMUT fragment cancer vaccine but would when immunized with a modified CALRMUT heteroclitic peptide vaccine approach. We found that heteroclitic CALRMUT peptides specifically designed for the MHC-I alleles of patients with CALRMUT MPN efficiently elicited a CALRMUT cross-reactive CD8+ T cell response in human peripheral blood samples but not to the matched weakly immunogenic CALRMUT native peptides. We corroborated this effect in vivo in mice and observed that C57BL/6J mice can mount a CD8+ T cell response to the CALRMUT fragment upon immunization with a CALRMUT heteroclitic, but not native, peptide. Together, our data emphasize the therapeutic potential of heteroclitic peptide-based cancer vaccines in patients with CALRMUT MPN.


Assuntos
Vacinas Anticâncer , Transtornos Mieloproliferativos , Neoplasias , Animais , Calreticulina/genética , Humanos , Janus Quinase 2/genética , Complexo Principal de Histocompatibilidade , Camundongos , Camundongos Endogâmicos C57BL , Mutação/genética , Transtornos Mieloproliferativos/genética , Neoplasias/genética , Peptídeos , Vacinas de Subunidades Antigênicas
3.
Blood ; 139(3): 357-368, 2022 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-34855941

RESUMO

Chronic obstructive pulmonary disease (COPD) is associated with age and smoking, but other determinants of the disease are incompletely understood. Clonal hematopoiesis of indeterminate potential (CHIP) is a common, age-related state in which somatic mutations in clonal blood populations induce aberrant inflammatory responses. Patients with CHIP have an elevated risk for cardiovascular disease, but the association of CHIP with COPD remains unclear. We analyzed whole-genome sequencing and whole-exome sequencing data to detect CHIP in 48 835 patients, of whom 8444 had moderate to very severe COPD, from four separate cohorts with COPD phenotyping and smoking history. We measured emphysema in murine models in which Tet2 was deleted in hematopoietic cells. In the COPDGene cohort, individuals with CHIP had risks of moderate-to-severe, severe, or very severe COPD that were 1.6 (adjusted 95% confidence interval [CI], 1.1-2.2) and 2.2 (adjusted 95% CI, 1.5-3.2) times greater than those for noncarriers. These findings were consistently observed in three additional cohorts and meta-analyses of all patients. CHIP was also associated with decreased FEV1% predicted in the COPDGene cohort (mean between-group differences, -5.7%; adjusted 95% CI, -8.8% to -2.6%), a finding replicated in additional cohorts. Smoke exposure was associated with a small but significant increased risk of having CHIP (odds ratio, 1.03 per 10 pack-years; 95% CI, 1.01-1.05 per 10 pack-years) in the meta-analysis of all patients. Inactivation of Tet2 in mouse hematopoietic cells exacerbated the development of emphysema and inflammation in models of cigarette smoke exposure. Somatic mutations in blood cells are associated with the development and severity of COPD, independent of age and cumulative smoke exposure.


Assuntos
Hematopoiese Clonal , Doença Pulmonar Obstrutiva Crônica/genética , Animais , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Razão de Chances , Doença Pulmonar Obstrutiva Crônica/etiologia , Fatores de Risco , Fumar/efeitos adversos , Sequenciamento do Exoma
4.
Blood Cancer Discov ; 2(5): 500-517, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34568833

RESUMO

Clonal hematopoiesis results from somatic mutations in cancer driver genes in hematopoietic stem cells. We sought to identify novel drivers of clonal expansion using an unbiased analysis of sequencing data from 84,683 persons and identified common mutations in the 5-methylcytosine reader, ZBTB33, as well as in YLPM1, SRCAP, and ZNF318. We also identified these mutations at low frequency in myelodysplastic syndrome patients. Zbtb33 edited mouse hematopoietic stem and progenitor cells exhibited a competitive advantage in vivo and increased genome-wide intron retention. ZBTB33 mutations potentially link DNA methylation and RNA splicing, the two most commonly mutated pathways in clonal hematopoiesis and MDS.


Assuntos
Hematopoiese Clonal , Síndromes Mielodisplásicas , Animais , Hematopoese/genética , Células-Tronco Hematopoéticas , Humanos , Camundongos , Síndromes Mielodisplásicas/genética , Splicing de RNA/genética , Fatores de Transcrição/genética
5.
Nature ; 586(7831): 763-768, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33057201

RESUMO

Age is the dominant risk factor for most chronic human diseases, but the mechanisms through which ageing confers this risk are largely unknown1. The age-related acquisition of somatic mutations that lead to clonal expansion in regenerating haematopoietic stem cell populations has recently been associated with both haematological cancer2-4 and coronary heart disease5-this phenomenon is termed clonal haematopoiesis of indeterminate potential (CHIP)6. Simultaneous analyses of germline and somatic whole-genome sequences provide the opportunity to identify root causes of CHIP. Here we analyse high-coverage whole-genome sequences from 97,691 participants of diverse ancestries in the National Heart, Lung, and Blood Institute Trans-omics for Precision Medicine (TOPMed) programme, and identify 4,229 individuals with CHIP. We identify associations with blood cell, lipid and inflammatory traits that are specific to different CHIP driver genes. Association of a genome-wide set of germline genetic variants enabled the identification of three genetic loci associated with CHIP status, including one locus at TET2 that was specific to individuals of African ancestry. In silico-informed in vitro evaluation of the TET2 germline locus enabled the identification of a causal variant that disrupts a TET2 distal enhancer, resulting in increased self-renewal of haematopoietic stem cells. Overall, we observe that germline genetic variation shapes haematopoietic stem cell function, leading to CHIP through mechanisms that are specific to clonal haematopoiesis as well as shared mechanisms that lead to somatic mutations across tissues.


Assuntos
Hematopoiese Clonal/genética , Predisposição Genética para Doença , Genoma Humano/genética , Sequenciamento Completo do Genoma , Adulto , África/etnologia , Idoso , Idoso de 80 Anos ou mais , População Negra/genética , Autorrenovação Celular/genética , Proteínas de Ligação a DNA/genética , Dioxigenases , Feminino , Mutação em Linhagem Germinativa/genética , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Masculino , Pessoa de Meia-Idade , National Heart, Lung, and Blood Institute (U.S.) , Fenótipo , Medicina de Precisão , Proteínas Proto-Oncogênicas/genética , Proteínas com Motivo Tripartido/genética , Estados Unidos , alfa Carioferinas/genética
6.
Nat Commun ; 11(1): 2996, 2020 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-32533060

RESUMO

Multiple myeloma (MM) is a plasma-cell neoplasm that is treated with high-dose chemotherapy, autologous stem cell transplant (ASCT) and long-term immunomodulatory drug (IMiD) maintenance. The presence of somatic mutations in the peripheral blood is termed clonal hematopoiesis of indeterminate potential (CHIP) and is associated with adverse outcomes. Targeted sequencing of the stem cell product from 629 MM patients treated by ASCT at the Dana-Farber Cancer Institute (2003-2011) detects CHIP in 136/629 patients (21.6%). The most commonly mutated genes are DNMT3A, TET2, TP53, ASXL1 and PPM1D. Twenty-one from fifty-six patients (3.3%) receiving first-line IMiD maintenance develop a therapy-related myeloid neoplasm (TMN). However, regardless of CHIP status, the use of IMiD maintenance associates with improved PFS and OS. In those not receiving IMiD maintenance, CHIP is associated with decreased overall survival (OS) (HR:1.34, p = 0.02) and progression free survival (PFS) (HR:1.45, p < 0.001) due to an increase in MM progression.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Hematopoese/genética , Transplante de Células-Tronco Hematopoéticas/métodos , Mieloma Múltiplo/terapia , Mutação , Adulto , Idoso , Idoso de 80 Anos ou mais , DNA (Citosina-5-)-Metiltransferases/genética , DNA Metiltransferase 3A , Proteínas de Ligação a DNA/genética , Dioxigenases , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Mieloma Múltiplo/genética , Intervalo Livre de Progressão , Proteínas Proto-Oncogênicas/genética , Transplante Autólogo , Proteína Supressora de Tumor p53/genética , Adulto Jovem
8.
Science ; 365(6453): 599-604, 2019 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-31395785

RESUMO

TP53, which encodes the tumor suppressor p53, is the most frequently mutated gene in human cancer. The selective pressures shaping its mutational spectrum, dominated by missense mutations, are enigmatic, and neomorphic gain-of-function (GOF) activities have been implicated. We used CRISPR-Cas9 to generate isogenic human leukemia cell lines of the most common TP53 missense mutations. Functional, DNA-binding, and transcriptional analyses revealed loss of function but no GOF effects. Comprehensive mutational scanning of p53 single-amino acid variants demonstrated that missense variants in the DNA-binding domain exert a dominant-negative effect (DNE). In mice, the DNE of p53 missense variants confers a selective advantage to hematopoietic cells on DNA damage. Analysis of clinical outcomes in patients with acute myeloid leukemia showed no evidence of GOF for TP53 missense mutations. Thus, a DNE is the primary unit of selection for TP53 missense mutations in myeloid malignancies.


Assuntos
Leucemia Mieloide Aguda/genética , Mutação de Sentido Incorreto , Seleção Genética , Proteína Supressora de Tumor p53/genética , Animais , Sistemas CRISPR-Cas , Mutação com Ganho de Função , Genes Dominantes , Humanos , Células K562 , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
9.
Blood Adv ; 3(14): 2199-2204, 2019 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-31324640

RESUMO

Immune evasion is a hallmark of cancer and a central mechanism underlying acquired resistance to immune therapy. In allogeneic hematopoietic cell transplantation (alloHCT), late relapses can arise after prolonged alloreactive T-cell control, but the molecular mechanisms of immune escape remain unclear. To identify mechanisms of immune evasion, we performed a genetic analysis of serial samples from 25 patients with myeloid malignancies who relapsed ≥1 year after alloHCT. Using targeted sequencing and microarray analysis to determine HLA allele-specific copy number, we identified copy-neutral loss of heterozygosity events and focal deletions spanning class 1 HLA genes in 2 of 12 recipients of matched unrelated-donor HCT and in 1 of 4 recipients of mismatched unrelated-donor HCT. Relapsed clones, although highly related to their antecedent pretransplantation malignancies, frequently acquired additional mutations in transcription factors and mitogenic signaling genes. Previously, the study of relapse after haploidentical HCT established the paradigm of immune evasion via loss of mismatched HLA. Here, in the context of matched unrelated-donor HCT, HLA loss provides genetic evidence that allogeneic immune recognition may be mediated by minor histocompatibility antigens and suggests opportunities for novel immunologic approaches for relapse prevention.


Assuntos
Deleção de Genes , Antígenos HLA/genética , Transplante de Células-Tronco Hematopoéticas , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Alelos , Biomarcadores , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Humanos , Leucemia Mieloide Aguda/terapia , Mutação , Polimorfismo de Nucleotídeo Único , Recidiva , Transplante Homólogo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA