Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Blood Adv ; 8(8): 2032-2043, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38295282

RESUMO

ABSTRACT: Autophagy is an intracellular survival process that has established roles in the long-term survival and function of hematopoietic stem cells (HSC). We investigated the contribution of autophagy to HSC fitness during allogeneic transplantation and graft-versus-host disease (GVHD). We demonstrate in vitro that both tumor necrosis factor and IL-1ß, major components of GVHD cytokine storm, synergistically promote autophagy in both HSC and their more mature hematopoietic progenitor cells (HPC). In vivo we demonstrate that autophagy is increased in donor HSC and HPC during GVHD. Competitive transplant experiments demonstrated that autophagy-deficient cells display reduced capacity to reconstitute the hematopoietic system compared to wild-type counterparts. In a major histocompatibility complex-mismatched model of GVHD and associated cytokine dysregulation, we demonstrate that autophagy-deficient HSC and progenitors fail to establish durable hematopoiesis, leading to primary graft failure and universal transplant related mortality. Using several different models, we confirm that autophagy activity is increased in early progenitor and HSC populations in the presence of T-cell-derived inflammatory cytokines and that these HSC populations require autophagy to survive. Thus, autophagy serves as a key survival mechanism in HSC and progenitor populations after allogeneic stem cell transplant and may represent a therapeutic target to prevent graft failure during GVHD.


Assuntos
Autofagia , Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Animais , Doença Enxerto-Hospedeiro/etiologia , Doença Enxerto-Hospedeiro/prevenção & controle , Camundongos , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/citologia , Modelos Animais de Doenças , Transplante Homólogo , Rejeição de Enxerto , Citocinas/metabolismo
2.
J Immunother Cancer ; 11(1)2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36634920

RESUMO

BACKGROUND: Pixatimod is a unique activator of the Toll-like Receptor 9 pathway. This phase I trial evaluated safety, efficacy and pharmacodynamics of pixatimod and PD-1 inhibitor nivolumab in immunologically cold cancers. METHODS: 3+3 dose escalation with microsatellite stable metastatic colorectal cancer (MSS mCRC) and metastatic pancreatic ductal adenocarcinoma (mPDAC) expansion cohorts. Participants received pixatimod once weekly as a 1-hour intravenous infusion plus nivolumab every 2 weeks. Objectives included assessment of safety, antitumor activity, pharmacodynamics, and pharmacokinetic profile. RESULTS: Fifty-eight participants started treatment. The maximum tolerated dose of pixatimod was 25 mg in combination with 240 mg nivolumab, which was used in the expansion phases of the study. Twenty-one grade 3-5 treatment-related adverse events were reported in 12 participants (21%); one participant receiving 50 mg pixatimod/nivolumab had a treatment-related grade 5 AE. The grade 3/4 rate in the MSS mCRC cohort (n=33) was 12%. There were no responders in the mPDAC cohort (n=18). In the MSS mCRC cohort, 25 participants were evaluable (initial postbaseline assessment scans >6 weeks); of these, three participants had confirmed partial responses (PR) and eight had stable disease (SD) for at least 9 weeks. Clinical benefit (PR+SD) was associated with lower Pan-Immune-Inflammation Value and plasma IL-6 but increased IP-10 and IP-10/IL-8 ratio. In an MSS mCRC participant with PR as best response, increased infiltration of T cells, dendritic cells, and to a lesser extent NK cells, were evident 5 weeks post-treatment. CONCLUSIONS: Pixatimod is well tolerated at 25 mg in combination with nivolumab. The efficacy signal and pharmacodynamic changes in MSS mCRC warrants further investigation. TRIAL REGISTRATION NUMBER: NCT05061017.


Assuntos
Adenocarcinoma , Neoplasias Colorretais , Humanos , Nivolumabe/farmacologia , Nivolumabe/uso terapêutico , Receptor Toll-Like 9 , Quimiocina CXCL10 , Adenocarcinoma/patologia , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Inibidores da Angiogênese/uso terapêutico , Repetições de Microssatélites , Neoplasias Pancreáticas
4.
JCI Insight ; 1(15): e86850, 2016 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-27699243

RESUMO

Regulatory T cells (Tregs) play a crucial role in the maintenance of peripheral tolerance. Quantitative and/or qualitative defects in Tregs result in diseases such as autoimmunity, allergy, malignancy, and graft-versus-host disease (GVHD), a serious complication of allogeneic stem cell transplantation (SCT). We recently reported increased expression of autophagy-related genes (Atg) in association with enhanced survival of Tregs after SCT. Autophagy is a self-degradative process for cytosolic components that promotes cell homeostasis and survival. Here, we demonstrate that the disruption of autophagy within FoxP3+ Tregs (B6.Atg7fl/fl-FoxP3cre+ ) resulted in a profound loss of Tregs, particularly within the bone marrow (BM). This resulted in dysregulated effector T cell activation and expansion, and the development of enterocolitis and scleroderma in aged mice. We show that the BM compartment is highly enriched in TIGIT+ Tregs and that this subset is differentially depleted in the absence of autophagy. Moreover, following allogeneic SCT, recipients of grafts from B6.Atg7fl/fl-FoxP3cre+ donors exhibited reduced Treg reconstitution, exacerbated GVHD, and reduced survival compared with recipients of B6.WT-FoxP3cre+ grafts. Collectively, these data indicate that autophagy-dependent Tregs are critical for the maintenance of tolerance after SCT and that the promotion of autophagy represents an attractive immune-restorative therapeutic strategy after allogeneic SCT.


Assuntos
Autofagia , Doença Enxerto-Hospedeiro/imunologia , Linfócitos T Reguladores/imunologia , Animais , Medula Óssea/fisiopatologia , Feminino , Transplante de Células-Tronco Hematopoéticas , Tolerância Imunológica , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL
5.
Blood ; 128(6): 794-804, 2016 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-27338097

RESUMO

Chronic graft-versus-host disease (cGVHD) is a major cause of late mortality following allogeneic bone marrow transplantation (BMT) and is characterized by tissue fibrosis manifesting as scleroderma and bronchiolitis obliterans. The development of acute GVHD (aGVHD) is a powerful clinical predictor of subsequent cGVHD, suggesting that aGVHD may invoke the immunologic pathways responsible for cGVHD. In preclinical models in which sclerodermatous cGVHD develops after a preceding period of mild aGVHD, we show that antigen presentation within major histocompatibility complex (MHC) class II of donor dendritic cells (DCs) is markedly impaired early after BMT. This is associated with a failure of regulatory T-cell (Treg) homeostasis and cGVHD. Donor DC-restricted deletion of MHC class II phenocopied this Treg deficiency and cGVHD. Moreover, specific depletion of donor Tregs after BMT also induced cGVHD, whereas adoptive transfer of Tregs ameliorated it. These data demonstrate that the defect in Treg homeostasis seen in cGVHD is a causative lesion and is downstream of defective antigen presentation within MHC class II that is induced by aGVHD.


Assuntos
Apresentação de Antígeno , Transplante de Medula Óssea/efeitos adversos , Células Dendríticas/patologia , Doença Enxerto-Hospedeiro/patologia , Linfócitos T Reguladores/patologia , Doença Aguda , Transferência Adotiva , Animais , Doença Crônica , Células Dendríticas/imunologia , Doença Enxerto-Hospedeiro/etiologia , Doença Enxerto-Hospedeiro/imunologia , Doença Enxerto-Hospedeiro/terapia , Antígenos de Histocompatibilidade Classe II/imunologia , Contagem de Linfócitos , Camundongos , Camundongos Endogâmicos BALB C , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/transplante
6.
J Exp Med ; 212(8): 1303-21, 2015 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-26169940

RESUMO

The primacy of the gastrointestinal (GI) tract in dictating the outcome of graft-versus-host disease (GVHD) is broadly accepted; however, the mechanisms controlling this effect are poorly understood. Here, we demonstrate that GVHD markedly enhances alloantigen presentation within the mesenteric lymph nodes (mLNs), mediated by donor CD103(+)CD11b(-) dendritic cells (DCs) that migrate from the colon under the influence of CCR7. Expansion and differentiation of donor T cells specifically within the mLNs is driven by profound levels of alloantigen, IL-12, and IL-6 promoted by Toll-like receptor (TLR) and receptor for advanced glycation end products (RAGE) signals. Critically, alloantigen presentation in the mLNs imprints gut-homing integrin signatures on donor T cells, leading to their emigration into the GI tract where they mediate fulminant disease. These data identify a critical, anatomically distinct, donor DC subset that amplifies GVHD. We thus highlight multiple therapeutic targets and the ability of GVHD, once initiated by recipient antigen-presenting cells, to generate a profound, localized, and lethal feed-forward cascade of donor DC-mediated indirect alloantigen presentation and cytokine secretion within the GI tract.


Assuntos
Antígenos CD/metabolismo , Movimento Celular/imunologia , Colo/citologia , Células Dendríticas/metabolismo , Doença Enxerto-Hospedeiro/fisiopatologia , Cadeias alfa de Integrinas/metabolismo , Linfonodos/citologia , Análise de Variância , Animais , Citometria de Fluxo , Interleucina-12/metabolismo , Interleucina-6/metabolismo , Linfonodos/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Transgênicos , Receptor para Produtos Finais de Glicação Avançada , Receptores CCR7/metabolismo , Receptores Imunológicos/metabolismo , Linfócitos T/imunologia
7.
Blood ; 125(19): 2933-6, 2015 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-25788702

RESUMO

Granulocyte colony-stimulating factor (G-CSF) is widely used clinically to prevent neutropenia after cytotoxic chemotherapy and to mobilize hematopoietic stem cells (HSCs) for transplantation. Autophagy, a process of cytoplasmic component recycling, maintains cellular homeostasis and protects the cell during periods of metabolic stress or nutrient deprivation. We have observed that G-CSF activates autophagy in neutrophils and HSCs from both mouse and human donors. Furthermore, G-CSF-induced neutrophil and HSC mobilization is impaired in the absence of autophagy. In contrast, autophagy is dispensable for direct HSC mobilization in response to the CXCR4 antagonist AMD3100. Altogether, these data demonstrate an important role for G-CSF in invoking autophagy within hematopoietic and myeloid cells and suggest that this pathway is critical for ensuring cell survival in response to clinically relevant cytokine-induced stress. These findings have direct relevance to HSC transplantation and the increasing clinical use of agents that modulate autophagy.


Assuntos
Autofagia , Fator Estimulador de Colônias de Granulócitos/farmacologia , Mobilização de Células-Tronco Hematopoéticas , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/efeitos dos fármacos , Animais , Fármacos Anti-HIV/farmacologia , Antígenos CD34/genética , Antígenos CD34/metabolismo , Proteína 5 Relacionada à Autofagia , Benzilaminas , Western Blotting , Células Cultivadas , Ciclamos , Citometria de Fluxo , Células-Tronco Hematopoéticas/patologia , Compostos Heterocíclicos/farmacologia , Humanos , Camundongos , Camundongos Knockout , Proteínas Associadas aos Microtúbulos/fisiologia , Neutrófilos/efeitos dos fármacos , Neutrófilos/patologia , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Receptores CXCR4/antagonistas & inibidores , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transplante Autólogo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA