RESUMO
BACKGROUND: There is a clinical need to identify patients with an elevated PSA who would benefit from prostate biopsy due to the presence of clinically significant prostate cancer (CSCaP). We have previously reported the development of the MiCheck® Test for clinically significant prostate cancer. Here, we report MiCheck's further development and incorporation of the Roche Cobas standard clinical chemistry analyzer. OBJECTIVES: To further develop and adapt the MiCheck® Prostate test so it can be performed using a standard clinical chemistry analyzer and characterize its performance using the MiCheck-01 clinical trial sample set. DESIGN, SETTINGS, AND PARTICIPANTS: About 358 patient samples from the MiCheck-01 US clinical trial were used for the development of the MiCheck® Prostate test. These consisted of 46 controls, 137 non-CaP, 62 non-CSCaP, and 113 CSCaP. METHODS: Serum analyte concentrations for cellular growth factors were determined using custom-made Luminex-based R&D Systems multi-analyte kits. Analytes that can also be measured using standard chemistry analyzers were examined for their ability to contribute to an algorithm with high sensitivity for the detection of clinically significant prostate cancer. Samples were then re-measured using a Roche Cobas analyzer for development of the final algorithm. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: Logistic regression modeling with Monte Carlo cross-validation was used to identify Human Epidydimal Protein 4 (HE4) as an analyte able to significantly improve the algorithm specificity at 95% sensitivity. A final model was developed using analyte measurements from the Cobas analzyer. RESULTS: The MiCheck® logistic regression model was developed and consisted of PSA, %free PSA, DRE, and HE4. The model differentiated clinically significant cancer from no cancer or not-clinically significant cancer with AUC of 0.85, sensitivity of 95%, and specificity of 50%. Applying the MiCheck® test to all evaluable 358 patients from the MiCheck-01 study demonstrated that up to 50% of unnecessary biopsies could be avoided while delaying diagnosis of only 5.3% of Gleason Score (GS) ≥3+4 cancers, 1.8% of GS≥4+3 cancers and no cancers of GS 8 to 10. CONCLUSIONS: The MiCheck® Prostate test identifies clinically significant prostate cancer with high sensitivity and negative predictive value (NPV). It can be performed in a clinical laboratory using a Roche Cobas clinical chemistry analyzer. The MiCheck® Prostate test could assist in reducing unnecessary prostate biopsies with a marginal number of patients experiencing a delayed diagnosis.
Assuntos
Próstata , Neoplasias da Próstata , Masculino , Humanos , Próstata/patologia , Antígeno Prostático Específico , Neoplasias da Próstata/patologia , Biópsia , Valor Preditivo dos TestesRESUMO
PREMISE: Whole-genome duplication is considered a major mechanism of sympatric speciation due to the creation of strong and instantaneous reproductive barriers. Although postzygotic reproductive isolation between diploids and polyploids is often expected, the extent of reproductive incompatibility must be empirically determined and compared to patterns of genetic isolation to fully characterize the reproductive dynamics between cytotypes. METHODS: We investigated reproductive compatibility between diploid and tetraploid Lycium australe in two mixed-cytotype populations using (1) controlled crossing experiments to evaluate fruit and seed production and (2) germination trials to test seed viability following homoploid and heteroploid crosses. We contrast these experiments with a single-nucleotide polymorphism (SNP) data set to measure genetic isolation between cytotypes and explore whether cytotype or population origin better explains patterns of genetic variation. Finally, we explore mating patterns using the observed germination rates of naturally produced seeds in each population. RESULTS: Although homoploid and heteroploid crosses resulted in similar fruit and seed production, reproductive isolation between co-occurring diploids and tetraploids was nearly complete, due to low seed viability following heteroploid crosses. Of 191,182 total SNPs, 21,679 were present in ≥90% of individuals and replicate runs using unlinked SNPs revealed strong clustering by cytotype and differentiation of tetraploids based on population origin. CONCLUSIONS: As often reported, diploid and tetraploid L. australe experience strong postzygotic isolation via hybrid seed inviability. Consistent with this result, cytotype explained a greater amount of variation in the SNP data set than population origin, despite some evidence of historical introgression.
Assuntos
Diploide , Lycium , Tetraploidia , Isolamento Reprodutivo , PoliploidiaRESUMO
Oenothera sect. Calylophus is a North American group of 13 recognized taxa in the evening primrose family (Onagraceae) with an evolutionary history that may include independent origins of bee pollination, edaphic endemism, and permanent translocation heterozygosity. Like other groups that radiated relatively recently and rapidly, taxon boundaries within Oenothera sect. Calylophus have remained challenging to circumscribe. In this study, we used target enrichment, flanking noncoding regions, gene tree/species tree methods, tests for gene flow modified for target-enrichment data, and morphometric analysis to reconstruct phylogenetic hypotheses, evaluate current taxon circumscriptions, and examine character evolution in Oenothera sect. Calylophus. Because sect. Calylophus comprises a clade with a relatively restricted geographic range, we were able to extensively sample across the range of geographic, edaphic, and morphological diversity in the group. We found that the combination of exons and flanking noncoding regions led to improved support for species relationships. We reconstructed potential hybrid origins of some accessions and note that if processes such as hybridization are not taken into account, the number of inferred evolutionary transitions may be artificially inflated. We recovered strong evidence for multiple evolutionary origins of bee pollination from ancestral hawkmoth pollination, edaphic specialization on gypsum, and permanent translocation heterozygosity. This study applies newly emerging techniques alongside dense infraspecific sampling and morphological analyses to effectively reconstruct the recalcitrant history of a rapid radiation. [Gypsum endemism; Oenothera sect. Calylophus; Onagraceae; phylogenomics; pollinator shift; recent radiation; target enrichment.].
Assuntos
Oenothera , Animais , Filogenia , Oenothera/genética , Sulfato de Cálcio , PolinizaçãoRESUMO
PREMISE: Long-distance dispersal has been important in explaining the present distributions of many plant species. Despite being infrequent, such dispersal events have considerable evolutionary consequences, because bottlenecks during colonization can result in reduced genetic diversity. We examined the phylogeographic history of Lycium carolinianum, a widespread taxon that ranges from southeastern North America to several Pacific islands, with intraspecific diversity in sexual and mating systems. METHODS: We used Bayesian, likelihood, and coalescent approaches with nuclear and plastid sequence data and genome-wide single nucleotide polymorphisms to reconstruct the dispersal history of this species. We also compared patterns of genetic variation in mainland and island populations using single nucleotide polymorphisms and allelic diversity at the S-RNase mating system gene. RESULTS: Lycium carolinianum is monophyletic and dispersed once from the North American mainland, colonizing the Pacific islands ca. 40,100 years ago. This dispersal was accompanied by a loss of genetic diversity in SNPs and the S-RNase locus due to a colonization bottleneck and the loss of self-incompatibility. Additionally, we documented at least two independent transitions to gynodioecy: once following the colonization of the Hawaiian Islands and loss of self-incompatibility, and a second time associated with polyploidy in the Yucatán region of Mexico. CONCLUSIONS: Long-distance dispersal via fleshy, bird dispersed fruits best explains the unusually widespread distribution of L. carolinianum. The collapse of diversity at the S-RNase locus in island populations suggests that self-fertilization may have facilitated the subsequent colonization of Pacific islands following a single dispersal from mainland North America.
Assuntos
Lycium , Teorema de Bayes , Havaí , Ilhas , Lycium/genética , México , América do Norte , Ilhas do Pacífico , FilogeniaRESUMO
BACKGROUND: Increasing numbers of patients are presenting with aggressive prostate cancer (CaP); therefore, there exists a need to optimally identify these patients pre-biopsy. OBJECTIVES: To compare the accuracy of total prostate specific antigen (PSA), %free PSA, and prostate health index (PHI) to differentiate between patients without CaP, with non-aggressive (Gleason 3â¯+â¯3, non-AgCaP) and with aggressive (Gleason ≥ 3â¯+â¯4, AgCaP) in a contemporary US population. DESIGN, SETTINGS, AND PARTICIPANTS: Serum samples were collected from 332 US patients scheduled for biopsy due to an elevated age-adjusted PSA. Site and Central biopsy pathologic assessment were performed. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: Testing of PSA, free PSA, proPSA, and PHI was performed along with central pathology review. Test performance using logistic regression analysis for differentiating CaP from non-CaP as well as non-AgCaP from AgCaP was evaluated. RESULTS AND LIMITATIONS: Central pathology review resulted in 32 upgrades including 14 Gleason 3â¯+â¯3 scores being upgraded to AgCaP with final distribution of 148 no-CaP, 64 non-AgCaP, and 120 AgCaP patients. Receiver operator curve (ROC) analysis of the different tests showed that PHI performed best at differentiating CaP from no-CaP subjects (area under the receiver operator curve 0.79). In contrast, the different tests were essentially equivalent in differentiating AgCaP vs. non-AgCaP. CONCLUSIONS: In this recent US study of prebiopsy patients we observed a high proportion of AgCaP patients consistent with previous studies in contemporary US populations. Central Gleason review is recommended for multi-institutional studies comparing biomarkers. PHI was superior to PSA, free PSA, %free PSA, and proPSA in detecting CaP in this population but was not superior at differentiating AgCaP from non-AgCaP.
Assuntos
Nível de Saúde , Antígeno Prostático Específico/sangue , Próstata , Adulto , Idoso , Idoso de 80 Anos ou mais , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Reprodutibilidade dos Testes , Estados UnidosRESUMO
BACKGROUND: A clinical need exists for a biomarker test to accurately delineate aggressive prostate cancer (AgCaP), and thus better assist clinicians and patients decision-making on whether to proceed to prostate biopsy. OBJECTIVES: To develop a blood test for AgCaP and compare to PSA, %free PSA, proPSA, and prostate health index (PHI) tests. DESIGN, SETTINGS AND PARTICIPANTS: Patient samples from the MiCheck-01 trial were used for development of the MiCheck test. METHODS: Serum analyte concentrations for cellular growth factors were determined using a custom-made Luminex-based R&D Systems multianalyte kit. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: Bayesian model averaging and random forest approaches were used to identify clinical factors and growth factors able to distinguish between men with AgCaP (Gleason Score [GS] ≥3+4) from those with non-AgCaP (GS 3+3). Logistic regression and Monte Carlo cross-validation identified variable combinations in order to able to maximize differentiation of AgCaP from non-AgCaP. RESULTS: The MiCheck logistic regression model was developed and comprises the following variables: serum prostate-specific antigen (PSA), patient age, Digital Rectal Exam (DRE) status, Leptin, IL-7, vascular endothelial growth factor, and Glypican-1. The model differentiated AgCaP from non-AgCaP with an area under the curve of 0.83 and was superior to PSA, %free PSA and PHI in all patient groups, regardless of PSA range. Applying the MiCheck test to all evaluable biopsy patients from the MiCheck-01 study demonstrated that up to 30% of biopsies could be avoided while delaying diagnosis of only 6.8% of GS ≥3+4 cancers, 5% of GS ≥4+3 cancers and no cancers of GS 8 or higher. CONCLUSIONS: The MiCheck test outperforms PSA, %free PSA and PHI tests in differentiating AgCaP vs. non-AgCaP patients. The MiCheck test could result in a significant number of biopsies being avoided with a low number of patients experiencing a delayed diagnosis.
Assuntos
Antígeno Prostático Específico/sangue , Neoplasias da Próstata/sangue , Neoplasias da Próstata/diagnóstico , Idoso , Idoso de 80 Anos ou mais , Testes Hematológicos/estatística & dados numéricos , Humanos , Masculino , Pessoa de Meia-Idade , Método de Monte Carlo , Gradação de TumoresRESUMO
Prostate cancer is responsible for hundreds of thousands of annual deaths worldwide. The current gold standard in early detection of prostate cancer, the prostate specific antigen test, boasts a high sensitivity but low specificity, resulting in many unnecessary prostate biopsies. Thus, emphasis has been placed on identifying new biomarkers to improve prostate cancer detection. Glypican-1 has recently been proposed as one such biomarker, however further exploration into its predictive power has been hindered by a lack of available, dependable glypican-1 immunoassays. Previously, we identified human glypican-1 as the antigenic target of the MIL-38 monoclonal antibody. Additionally, we have now generated another monoclonal antibody, 3G5, that also recognizes human glypican-1. Here we report the development of a reliable, custom Luminex® assay that enables precise quantitation of circulating human glypican-1 in plasma and serum. Using this assay, we show for the first time that circulating glypican-1 levels can differentiate non-cancer (normal and benign prostatic hyperplasia) patients from prostate cancer patients, as well as benign prostatic hyperplasia patients alone from prostate cancer patients. Our findings strongly promote future investigation into the use of glypican-1 for early detection of prostate cancer.
RESUMO
BACKGROUND AND AIMS: Polyploidy has important effects on reproductive systems in plants and has been implicated in the evolution of dimorphic sexual systems. In particular, higher ploidy is associated with gender dimorphism across Lycium species (Solanaceae) and across populations within the species Lycium californicum. Previous research on the association of cytotype and sexual system within L. californicum sampled a limited portion of the species range, and did not investigate evolutionary transitions between sexual systems. Lycium californicum occurs in arid regions on offshore islands and mainland regions in the south-western United States and Mexico, motivating a more comprehensive analysis of intraspecific variation in sexual system and cytotype across the full range of this species. METHODS: Sexual system (dimorphic vs. cosexual) was determined for 34 populations across the geographical range of L. californicum using field observations of pollen production, and was confirmed using morphological measurements and among-plant correlations of primary sexual traits. Ploidy was inferred using flow cytometry in 28 populations. DNA sequence data from four plastid and two nuclear regions were used to reconstruct relationships among populations and to map transitions in sexual system and ploidy. KEY RESULTS: Lycium californicum is monophyletic, ancestrally diploid and cosexual, and the association of gender dimorphism and polyploidy appears to have two evolutionary origins in this species. Compared with cosexual populations, dimorphic populations had bimodal anther size distributions, negative correlations between male and female floral traits, and larger coefficients of variation for primary sexual traits. Flow cytometry confirmed tetraploidy in dimorphic populations, whereas cosexual populations were diploid. CONCLUSIONS: Tetraploidy and gender dimorphism are perfectly correlated in L. californicum, and the distribution of tetraploid-dimorphic populations is restricted to populations in Arizona and the Baja California peninsula. The analysis suggests that tetraploidy and dimorphism likely established in Baja California and may have evolved multiple times.
Assuntos
Lycium/genética , Polimorfismo Genético , Reprodução/fisiologia , Arizona , California , Cloroplastos/genética , Ecótipo , Genética Populacional , Haplótipos , Lycium/fisiologia , México , Filogenia , Poliploidia , Reprodução/genéticaRESUMO
UNLABELLED: ⢠PREMISE OF THE STUDY: An association between polyploidy and gender dimorphism has been noted in several plant lineages. Whereas the majority of Lycium species are diploid and have hermaphroditic flowers in cosexual populations, gender dimorphism (gynodioecy, dioecy) has been shown to be uniformly associated with polyploidy in previous studies. Preliminary field observations suggested that some populations of Lycium carolinianum were dimorphic, providing a test of this association.⢠METHODS: We assessed sexual systems and cytotype variation (to infer ploidy) across 17 populations of L. carolinianum. Comparison of flowers in cosexual and dimorphic populations were used to infer changes in reproductive morphology associated with the evolution of gynodioecy.⢠KEY RESULTS: The majority of populations were cosexual in gender expression, but dimorphism was present in the Yucatán and in some populations in Hawaii. Populations varied in ploidy and were either diploid or tetraploid. Floral sexual dimorphism was present in all gynodioecious populations, though the magnitude differed and was cryptic in some cases. Our results are consistent with the hypothesis that following the evolution of gynodioecy, flowers on hermaphrodites increased in size.⢠CONCLUSIONS: Dimorphic sexual systems have likely evolved convergently in L. carolinianum. In contrast to previous studies, dimorphism is not perfectly associated with polyploidy. Although our sample from the Yucatán was both tetraploid and dimorphic, all populations in Hawaii were diploid regardless of sexual system. Ongoing phylogeographic and mating system studies will contribute to our understanding of reproductive evolution in this widespread, polymorphic species.
Assuntos
Evolução Biológica , Flores/anatomia & histologia , Variação Genética , Lycium/genética , Poliploidia , Havaí , Lycium/anatomia & histologia , Lycium/fisiologia , México , ReproduçãoRESUMO
We present an optimized triple modality reporter construct combining a far-red fluorescent protein (E2-Crimson), enhanced firefly luciferase enzyme (Luc2), and truncated wild type herpes simplex virus I thymidine kinase (wttk) that allows for sensitive, long-term tracking of tumor growth in vivo by fluorescence, bioluminescence, and positron emission tomography. Two human cancer cell lines (MDA-MB-231 breast cancer and HT-1080 fibrosarcoma cancer) were successfully transduced to express this triple modality reporter. Fluorescence and bioluminescence imaging of the triple modality reporter were used to accurately quantify the therapeutic responses of MDA-MB-231 tumors to the chemotherapeutic agent monomethyl auristatin E in vivo in athymic nude mice. Positive correlation was observed between the fluorescence and bioluminescence signals, and these signals were also positively correlated with the ex vivo tumor weights. This is the first reported use of both fluorescence and bioluminescence signals from a multi-modality reporter construct to measure drug efficacy in vivo.
Assuntos
Luciferases , Proteínas Luminescentes , Neoplasias/diagnóstico , Proteínas Recombinantes de Fusão , Timidina Quinase , Animais , Linhagem Celular Tumoral , Fluorescência , Herpesvirus Humano 1/enzimologia , Humanos , Medições Luminescentes/métodos , Camundongos , Tomografia por Emissão de Pósitrons/métodos , Proteínas Recombinantes de Fusão/genética , Transdução Genética , Proteína Vermelha FluorescenteRESUMO
The identification of genomic regions with sufficient variation to elucidate fine-scale relationships among closely related species is a major goal of phylogenetic systematics. However, the accumulation of such multi-locus data sets brings its own challenges, given that gene trees do not necessarily represent the true species tree. Using genomic tools developed for Solanum (Solanaceae), we have evaluated the utility of nuclear conserved ortholog set II (COSII) regions for phylogenetic inference in tribe Lycieae (Solanaceae). Five COSII regions, with intronic contents ranging from 68% to 91%, were sequenced in 10 species. Their phylogenetic utility was assessed and compared with data from more commonly used nuclear (GBSSI, nrITS) and cpDNA spacer data. We compared the effectiveness of a traditional total evidence concatenation approach versus the recently developed Bayesian estimation of species trees (BEST) method to infer species trees given multiple independent gene trees. All of the sampled COSII regions had high numbers of parsimony-informative (PI) characters, and two of the COSII regions had more PI characters than the GBSSI, ITS, and cpDNA spacer data sets combined. COSII markers are a promising new tool for phylogenetic inference in Solanaceae, and should be explored in related groups. Both the concatenation and BEST approaches yielded similar topologies; however, when multiple individuals with polyphyletic alleles were included, BEST was clearly the more robust approach for inferring species trees in the presence of gene tree incongruence.
Assuntos
Evolução Molecular , Lycium/genética , Filogenia , Alelos , Núcleo Celular/genética , DNA de Cloroplastos/genética , DNA de Plantas/genética , DNA Espaçador Ribossômico/genética , Marcadores Genéticos , Genoma de Planta , Íntrons , Lycium/classificação , Alinhamento de Sequência , Análise de Sequência de DNARESUMO
Over 50 years ago, Baker (1955, 1967) suggested that self-compatible species were more likely than self-incompatible species to establish new populations on oceanic islands. His logic was straightforward and rested on the assumption that colonization was infrequent; thus, mate limitation favored the establishment of self-fertilizing individuals. In support of Baker's rule, many authors have documented high frequencies of self-compatibility on islands, and recent work has solidified the generality of Baker's ideas. The genus Lycium (Solanaceae) has ca. 80 species distributed worldwide, and phylogenetic studies suggest that Lycium originated in South America and dispersed to the Old World a single time. Previous analyses of the S-RNase gene, which controls the stylar component of self-incompatibility, have shown that gametophytically controlled self-incompatibility is ancestral within the genus, making Lycium a good model for investigating Baker's assertions concerning reproductive assurance following oceanic dispersal. Lycium is also useful for investigations of reproductive evolution, given that species vary both in sexual expression and the presence of self-incompatibility. A model for the evolution of gender dimorphism suggests that polyploidy breaks down self-incompatibility, leading to the evolution of gender dimorphism, which arises as an alternative outcrossing mechanism. There is a perfect association of dimorphic gender expression, polyploidy, and self-compatibility (vs. cosexuality, diploidy, and self-incompatibility) among North American Lycium. Although the association between ploidy level and gender expression also holds for African Lycium, to date no studies of mating systems have been initiated in Old World species. Here, using controlled pollinations, we document strong self-incompatibility in two cosexual, diploid species of African Lycium. Further, we sequence the S-RNase gene in 15 individuals from five cosexual, diploid species of African Lycium and recover 24 putative alleles. Genealogical analyses indicate reduced trans-generic diversity of S-RNases in the Old World compared to the New World. We suggest that genetic diversity at this locus was reduced as a result of a founder event, but, despite the bottleneck, self-incompatibility was maintained in the Old World. Maximum-likelihood analyses of codon substitution patterns indicate that positive Darwinian selection has been relatively strong in the Old World, suggesting the rediversification of S-RNases following a bottleneck. The present data thus provide a dramatic exception to Baker's rule, in addition to supporting a key assumption of the Miller and Venable (2000) model, namely that self-incompatibility is associated with diploidy and cosexuality.
Assuntos
Lycium/genética , Lycium/fisiologia , Cruzamento , Evolução Molecular , Efeito Fundador , Variação Genética , Genótipo , Geografia , Lycium/classificação , Lycium/enzimologia , Dados de Sequência Molecular , Filogenia , Polinização/fisiologia , Ribonucleases/genética , Seleção GenéticaRESUMO
GC-MS analyses of nocturnal and diurnal floral volatiles from nine tobacco species (Nicotiana; Solanaceae) resulted in the identification of 125 volatiles, including mono- and sesquiterpenoids, benzenoid and aliphatic alcohols, aldehydes and esters. Fragrance chemistry was species-specific during nocturnal emissions, whereas odors emitted diurnally were less distinct. All species emitted greater amounts of fragrance at night, regardless of pollinator affinity. However, these species differed markedly in odor complexity and emission rates, even among close relatives. Species-specific differences in emission rates per flower and per unit fresh or dry flower mass were significantly correlated; fragrance differences between species were not greatly affected by different forms of standardization. Flowers of hawkmoth-pollinated species emitted nitrogenous aldoximes and benzenoid esters on nocturnal rhythms. Four Nicotiana species in section Alatae sensu strictu have flowers that emit large amounts of 1,8 cineole, with smaller amounts of monoterpene hydrocarbons and alpha-terpineol on a nocturnal rhythm. This pattern suggests the activity of a single biosynthetic enzyme (1,8 cineole synthase) with major and minor products; however, several terpene synthase enzymes could contribute to total monoterpene emissions. Our analyses, combined with other studies of tobacco volatiles, suggest that phenotypic fragrance variation in Nicotiana is shaped by pollinator- and herbivore-mediated selection, biosynthetic pathway dynamics and shared evolutionary history.