Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Rep Med ; 4(10): 101211, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37797615

RESUMO

The antiviral DNA cytosine deaminase APOBEC3B has been implicated as a source of mutation in many cancers. However, despite years of work, a causal relationship has yet to be established in vivo. Here, we report a murine model that expresses tumor-like levels of human APOBEC3B. Animals expressing full-body APOBEC3B appear to develop normally. However, adult males manifest infertility, and older animals of both sexes show accelerated rates of carcinogenesis, visual and molecular tumor heterogeneity, and metastasis. Both primary and metastatic tumors exhibit increased frequencies of C-to-T mutations in TC dinucleotide motifs consistent with the established biochemical activity of APOBEC3B. Enrichment for APOBEC3B-attributable single base substitution mutations also associates with elevated levels of insertion-deletion mutations and structural variations. APOBEC3B catalytic activity is required for all of these phenotypes. Together, these studies provide a cause-and-effect demonstration that human APOBEC3B is capable of driving both tumor initiation and evolution in vivo.


Assuntos
Neoplasias , Adulto , Humanos , Animais , Camundongos , Mutação , Neoplasias/genética , Transformação Celular Neoplásica , Citidina Desaminase/genética , Antígenos de Histocompatibilidade Menor/genética
2.
bioRxiv ; 2023 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-36865194

RESUMO

The antiviral DNA cytosine deaminase APOBEC3B has been implicated as a source of mutation in many different cancers. Despite over 10 years of work, a causal relationship has yet to be established between APOBEC3B and any stage of carcinogenesis. Here we report a murine model that expresses tumor-like levels of human APOBEC3B after Cre-mediated recombination. Animals appear to develop normally with full-body expression of APOBEC3B. However, adult males manifest infertility and older animals of both sexes show accelerated rates of tumorigenesis (mostly lymphomas or hepatocellular carcinomas). Interestingly, primary tumors also show overt heterogeneity, and a subset spreads to secondary sites. Both primary and metastatic tumors exhibit increased frequencies of C-to-T mutations in TC dinucleotide motifs consistent with the established biochemical activity of APOBEC3B. Elevated levels of structural variation and insertion-deletion mutations also accumulate in these tumors. Together, these studies provide the first cause-and-effect demonstration that human APOBEC3B is an oncoprotein capable of causing a wide range of genetic changes and driving tumor formation in vivo .

3.
Nat Commun ; 12(1): 1035, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33589603

RESUMO

Stochastic asynchronous replication timing (AS-RT) is a phenomenon in which the time of replication of each allele is different, and the identity of the early allele varies between cells. By taking advantage of stable clonal pre-B cell populations derived from C57BL6/Castaneous mice, we have mapped the genome-wide AS-RT loci, independently of genetic differences. These regions are characterized by differential chromatin accessibility, mono-allelic expression and include new gene families involved in specifying cell identity. By combining population level mapping with single cell FISH, our data reveal the existence of a novel regulatory program that coordinates a fixed relationship between AS-RT regions on any given chromosome, with some loci set to replicate in a parallel and others set in the anti-parallel orientation. Our results show that AS-RT is a highly regulated epigenetic mark established during early embryogenesis that may be used for facilitating the programming of mono-allelic choice throughout development.


Assuntos
Células da Medula Óssea/metabolismo , Cromatina/química , Período de Replicação do DNA , Epigênese Genética , Genoma , Células Precursoras de Linfócitos B/metabolismo , Alelos , Animais , Células da Medula Óssea/citologia , Cromatina/metabolismo , Cromatina/ultraestrutura , Células Clonais , Cruzamentos Genéticos , Embrião de Mamíferos , Desenvolvimento Embrionário/genética , Feminino , Loci Gênicos , Hibridização in Situ Fluorescente , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Células Precursoras de Linfócitos B/citologia
4.
Nat Cancer ; 2(12): 1338-1356, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-35121902

RESUMO

Despite efforts in understanding its underlying mechanisms, the etiology of chromosomal instability (CIN) remains unclear for many tumor types. Here, we identify CIN initiation as a previously undescribed function for APOBEC3A (A3A), a cytidine deaminase upregulated across cancer types. Using genetic mouse models of pancreatic ductal adenocarcinoma (PDA) and genomics analyses in human tumor cells we show that A3A-induced CIN leads to aggressive tumors characterized by enhanced early dissemination and metastasis in a STING-dependent manner and independently of the canonical deaminase functions of A3A. We show that A3A upregulation recapitulates numerous copy number alterations commonly observed in patients with PDA, including co-deletions in DNA repair pathway genes, which in turn render these tumors susceptible to poly (ADP-ribose) polymerase inhibition. Overall, our results demonstrate that A3A plays an unexpected role in PDA as a specific driver of CIN, with significant effects on disease progression and treatment.


Assuntos
Citidina Desaminase , Neoplasias Pancreáticas , Animais , Instabilidade Cromossômica/genética , Citidina Desaminase/genética , Humanos , Camundongos , Neoplasias Pancreáticas/genética , Proteínas/genética , Neoplasias Pancreáticas
5.
J Exp Med ; 217(12)2020 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-32870257

RESUMO

The APOBEC3 family of antiviral DNA cytosine deaminases is implicated as the second largest source of mutation in cancer. This mutational process may be a causal driver or inconsequential passenger to the overall tumor phenotype. We show that human APOBEC3A expression in murine colon and liver tissues increases tumorigenesis. All other APOBEC3 family members, including APOBEC3B, fail to promote liver tumor formation. Tumor DNA sequences from APOBEC3A-expressing animals display hallmark APOBEC signature mutations in TCA/T motifs. Bioinformatic comparisons of the observed APOBEC3A mutation signature in murine tumors, previously reported APOBEC3A and APOBEC3B mutation signatures in yeast, and reanalyzed APOBEC mutation signatures in human tumor datasets support cause-and-effect relationships for APOBEC3A-catalyzed deamination and mutagenesis in driving multiple human cancers.


Assuntos
Biocatálise , Carcinogênese/genética , Citidina Desaminase/genética , Mutação/genética , Proteínas/genética , Polipose Adenomatosa do Colo/patologia , Animais , Sequência de Bases , Carcinogênese/patologia , Elementos de DNA Transponíveis/genética , Humanos , Hidrolases/genética , Neoplasias Intestinais/patologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Regeneração Hepática , Perda de Heterozigosidade/genética , Camundongos Transgênicos , Pólipos/patologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
6.
Antibodies (Basel) ; 8(3)2019 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-31544853

RESUMO

The DNA cytosine deaminase APOBEC3B (A3B) is normally an antiviral factor in the innate immune response. However, A3B has been implicated in cancer mutagenesis, particularly in solid tumors of the bladder, breast, cervix, head/neck, and lung. Here, we report data on the generation and characterization of a rabbit monoclonal antibody (mAb) for human A3B. One mAb, 5210-87-13, demonstrates utility in multiple applications, including ELISA, immunoblot, immunofluorescence microscopy, and immunohistochemistry. In head-to-head tests with commercial reagents, 5210-87-13 was the only rabbit monoclonal suitable for detecting native A3B and for immunohistochemical quantification of A3B in tumor tissues. This novel mAb has the potential to enable a wide range of fundamental and clinical studies on A3B in human biology and disease.

7.
Nat Commun ; 9(1): 2040, 2018 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-29795194

RESUMO

Development in mammals is accompanied by specific de novo and demethylation events that are thought to stabilize differentiated cell phenotypes. We demonstrate that a large percentage of the tissue-specific methylation pattern is generated postnatally. Demethylation in the liver is observed in thousands of enhancer-like sequences associated with genes that undergo activation during the first few weeks of life. Using. conditional gene ablation strategy we show that the removal of these methyl groups is stable and necessary for assuring proper hepatocyte gene expression and function through its effect on chromatin accessibility. These postnatal changes in methylation come about through exposure to hormone signaling. These results define the molecular rules of 5-methyl-cytosine regulation as an epigenetic mechanism underlying cellular responses to. changing environment.


Assuntos
Desmetilação do DNA , Epigênese Genética/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Fígado/crescimento & desenvolvimento , Transdução de Sinais/fisiologia , 5-Metilcitosina/metabolismo , Animais , Animais Recém-Nascidos , Células Cultivadas , Proteínas de Ligação a DNA/genética , Dioxigenases , Feminino , Hepatócitos/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , Fígado/citologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Cultura Primária de Células , Proteínas Proto-Oncogênicas/genética , Análise de Sequência de RNA
8.
Mol Cell ; 69(1): 75-86.e9, 2018 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-29290613

RESUMO

Human APOBEC3H and homologous single-stranded DNA cytosine deaminases are unique to mammals. These DNA-editing enzymes function in innate immunity by restricting the replication of viruses and transposons. APOBEC3H also contributes to cancer mutagenesis. Here, we address the fundamental nature of RNA in regulating human APOBEC3H activities. APOBEC3H co-purifies with RNA as an inactive protein, and RNase A treatment enables strong DNA deaminase activity. RNA-binding-defective mutants demonstrate clear separation of function by becoming DNA hypermutators. Biochemical and crystallographic data demonstrate a mechanism in which double-stranded RNA mediates enzyme dimerization. Additionally, APOBEC3H separation-of-function mutants show that RNA binding is required for cytoplasmic localization, packaging into HIV-1 particles, and antiviral activity. Overall, these results support a model in which structured RNA negatively regulates the potentially harmful DNA deamination activity of APOBEC3H while, at the same time, positively regulating its antiviral activity.


Assuntos
Aminoidrolases/metabolismo , Dimerização , HIV-1/crescimento & desenvolvimento , Montagem de Vírus/genética , Aminoidrolases/genética , Linhagem Celular Tumoral , Cristalografia por Raios X , Citosina Desaminase/metabolismo , Células HEK293 , Células HeLa , Humanos , Estrutura Secundária de Proteína , RNA/genética , RNA/metabolismo , Proteínas de Ligação a RNA/genética , Ribonuclease Pancreático/metabolismo
9.
Front Immunol ; 5: 625, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25538709

RESUMO

While most genes in the mammalian genome are transcribed from both parental chromosomes in cells where they are expressed, approximately 10% of genes are expressed monoallelically, so that any given cell will express either the paternal or maternal allele, but not both. The antigen receptor genes in B and T cells are well-studied examples of a gene family, which is expressed in a monoallelic manner, in a process coined "allelic exclusion." During lymphocyte development, only one allele of each antigen receptor undergoes V(D)J rearrangement at a time, and once productive rearrangement is sensed, rearrangement of the second allele is prevented. In this mini review, we discuss the epigenetic processes, including asynchronous replication, nuclear localization, chromatin condensation, histone modifications, and DNA methylation, which appear to regulate the primary rearrangement of a single allele, while blocking the rearrangement of the second allele.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA