RESUMO
Crimean-Congo hemorrhagic fever virus (CCHFV) is a tick-borne orthonairovirus that has become a serious threat to the public health. CCHFV has a single-stranded, tripartite RNA genome composed of L, M, and S segments. Cleavage of the M polyprotein precursor generates the two envelope glycoproteins (GPs) as well as three secreted nonstructural proteins GP38 and GP85 or GP160, representing GP38 only or GP38 linked to a mucin-like protein (MLD), and a double-membrane-spanning protein called NSm. Here, we examined the relevance of each M-segment non-structural proteins in virus assembly, egress and infectivity using a well-established CCHFV virus-like-particle system (tc-VLP). Deletion of MLD protein had no impact on infectivity although it reduced by 60% incorporation of GPs into particles. Additional deletion of GP38 abolished production of infectious tc-VLPs. The loss of infectivity was associated with impaired Gc maturation and exclusion from the Golgi, showing that Gn is not sufficient to target CCHFV GPs to the site of assembly. Consistent with this, efficient complementation was achieved in cells expressing MLD-GP38 in trans with increased levels of preGc to Gc conversion, co-targeting to the Golgi, resulting in particle incorporation and restored infectivity. Contrastingly, a MLD-GP38 variant retained in the ER allowed preGc cleavage but failed to rescue miss-localization or infectivity. NSm deletion, conversely, did not affect trafficking of Gc but interfered with Gc processing, particle formation and secretion. NSm expression affected N-glycosylation of different viral proteins most likely due to increased speed of trafficking through the secretory pathway. This highlights a potential role of NSm in overcoming Golgi retention and facilitating CCHFV egress. Thus, deletions of GP38 or NSm demonstrate their important role on CCHFV particle production and infectivity. GP85 is an essential viral factor for preGc cleavage, trafficking and Gc incorporation into particles, whereas NSm protein is involved in CCHFV assembly and virion secretion.
Assuntos
Vírus da Febre Hemorrágica da Crimeia-Congo/fisiologia , Proteínas Estruturais Virais , Montagem de Vírus , Linhagem Celular Tumoral , Deleção de Genes , Humanos , Proteínas Estruturais Virais/genética , Proteínas Estruturais Virais/metabolismoRESUMO
T cells represent a valuable tool for treating cancers and infectious and inherited diseases; however, they are mainly short-lived in vivo. T-cell therapies would strongly benefit from gene transfer into long-lived persisting naive T cells or T-cell progenitors. Here we demonstrate that baboon envelope glycoprotein pseudotyped lentiviral vectors (BaEV-LVs) far outperformed other LV pseudotypes for transduction of naive adult and fetal interleukin-7-stimulated T cells. Remarkably, BaEV-LVs efficiently transduced thymocytes and T-cell progenitors generated by culture of CD34+ cells on Delta-like ligand 4 (Dll4). Upon NOD/SCIDγC-/- engraftment, high transduction levels (80%-90%) were maintained in all T-cell subpopulations. Moreover, T-cell lineage reconstitution was accelerated in NOD/SCIDγC-/- recipients after T-cell progenitor injection compared with hematopoietic stem cell transplantation. Furthermore, γC-encoding BaEV-LVs very efficiently transduced Dll4-generated T-cell precursors from a patient with X-linked severe combined immunodeficiency (SCID-X1), which fully rescued T-cell development in vitro. These results indicate that BaEV-LVs are valuable tools for the genetic modification of naive T cells, which are important targets for gene therapy. Moreover, they allowed for the generation of gene-corrected T-cell progenitors that rescued SCID-X1 T-cell development in vitro. Ultimately, the coinjection of LV-corrected T-cell progenitors and hematopoietic stem cells might accelerate T-cell reconstitution in immunodeficient patients.
Assuntos
Lentivirus/genética , Células-Tronco/metabolismo , Animais , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , PapioRESUMO
Fanconi anemia (FA) is a rare genetic syndrome characterized by progressive marrow failure. Gene therapy by infusion of FA-corrected autologous hematopoietic stem cells (HSCs) may offer a potential cure since it is a monogenetic disease with mutations in the FANC genes, coding for DNA repair enzymes [1]. However, the collection of hCD34+-cells in FA patients implies particular challenges because of the reduced numbers of progenitor cells present in their bone marrow (BM) [2] or mobilized peripheral blood [3-5]. In addition, the FA genetic defect fragilizes the HSCs [6]. These particular features might explain why the first clinical trials using murine leukemia virus derived retroviral vectors conducted for FA failed to show engraftment of corrected cells. The gene therapy field is now moving towards the use of lentiviral vectors (LVs) evidenced by recent succesful clinical trials for the treatment of patients suffering from adrenoleukodystrophy (ALD) [7], ß-thalassemia [8], metachromatic leukodystrophy [9] and Wiskott-Aldrich syndrome [10]. LV trials for X-linked severe combined immunodificiency and Fanconi anemia (FA) defects were recently initiated [11, 12]. Fifteen years of preclinical studies using different FA mouse models and in vitro research allowed us to find the weak points in the in vitro culture and transduction conditions, which most probably led to the initial failure of FA HSC gene therapy. In this review, we will focus on the different obstacles, unique to FA gene therapy, and how they have been overcome through the development of optimized protocols for FA HSC culture and transduction and the engineering of new gene transfer tools for FA HSCs. These combined advances in the field hopefully will allow the correction of the FA hematological defect in the near future.
Assuntos
Anemia de Fanconi/terapia , Terapia Genética/métodos , Vetores Genéticos/genética , Lentivirus/genética , Animais , Anemia de Fanconi/genética , Técnicas de Transferência de Genes , Transplante de Células-Tronco Hematopoéticas/métodos , Células-Tronco Hematopoéticas/metabolismo , HumanosRESUMO
Hematopoietic stem cell (HSC)-based gene therapy trials are now moving toward the use of lentiviral vectors (LVs) with success. However, one challenge in the field remains: efficient transduction of HSCs without compromising their stem cell potential. Here we showed that measles virus glycoprotein-displaying LVs (hemagglutinin and fusion protein LVs [H/F-LVs]) were capable of transducing 100% of early-acting cytokine-stimulated human CD34+ (hCD34+) progenitor cells upon a single application. Strikingly, these H/F-LVs also allowed transduction of up to 70% of nonstimulated quiescent hCD34+ cells, whereas conventional vesicular stomatitis virus G (VSV-G)-LVs reached 5% at the most with H/F-LV entry occurring exclusively through the CD46 complement receptor. Importantly, reconstitution of NOD/SCIDγc-/- (NSG) mice with H/F-LV transduced prestimulated or resting hCD34+ cells confirmed these high transduction levels in all myeloid and lymphoid lineages. Remarkably, for resting CD34+ cells, secondary recipients exhibited increasing transduction levels of up to 100%, emphasizing that H/F-LVs efficiently gene-marked HSCs in the resting state. Because H/F-LVs promoted ex vivo gene modification of minimally manipulated CD34+ progenitors that maintained stemness, we assessed their applicability in Fanconi anemia, a bone marrow (BM) failure with chromosomal fragility. Notably, only H/F-LVs efficiently gene-corrected minimally stimulated hCD34+ cells in unfractionated BM from these patients. These H/F-LVs improved HSC gene delivery in the absence of cytokine stimulation while maintaining their stem cell potential. Thus, H/F-LVs will facilitate future clinical applications requiring HSC gene modification, including BM failure syndromes, for which treatment has been very challenging up to now.
RESUMO
Primary human T lymphocytes represent an important cell population for adoptive immunotherapies, including chimeric-antigen and T-cell receptor applications, as they have the capability to eliminate non-self, virus-infected and tumor cells. Given the increasing numbers of clinical immunotherapy applications, the development of an optimal vector platform for genetic T lymphocyte engineering, which allows cost-effective high-quality vector productions, remains a critical goal. Alpharetroviral self-inactivating vectors (ARV) have several advantages compared to other vector platforms, including a more random genomic integration pattern and reduced likelihood for inducing aberrant splicing of integrated proviruses. We developed an ARV platform for the transduction of primary human T lymphocytes. We demonstrated functional transgene transfer using the clinically relevant herpes-simplex-virus thymidine kinase variant TK.007. Proof-of-concept of alpharetroviral-mediated T-lymphocyte engineering was shown in vitro and in a humanized transplantation model in vivo. Furthermore, we established a stable, human alpharetroviral packaging cell line in which we deleted the entry receptor (SLC1A5) for RD114/TR-pseudotyped ARVs to prevent superinfection and enhance genomic integrity of the packaging cell line and viral particles. We showed that superinfection can be entirely prevented, while maintaining high recombinant virus titers. Taken together, this resulted in an improved production platform representing an economic strategy for translating the promising features of ARVs for therapeutic T-lymphocyte engineering.
Assuntos
Alpharetrovirus/metabolismo , Técnicas Genéticas , Vetores Genéticos/metabolismo , Linfócitos T/metabolismo , Montagem de Vírus , Sequência de Bases , Sistemas CRISPR-Cas/genética , Células Clonais , Genes Reporter , Células HEK293 , Humanos , Células Jurkat , Reprodutibilidade dos Testes , Linfócitos T/imunologia , Transdução Genética , TransgenesRESUMO
Playing a central role in both innate and adaptive immunity, CD4(+) T cells are a key target for genetic modifications in basic research and immunotherapy. In this article, we describe novel lentiviral vectors (CD4-LV) that have been rendered selective for human or simian CD4(+) cells by surface engineering. When applied to PBMCs, CD4-LV transduced CD4(+) but not CD4(-) cells. Notably, also unstimulated T cells were stably genetically modified. Upon systemic or intrasplenic administration into mice reconstituted with human PBMCs or hematopoietic stem cells, reporter gene expression was predominantly detected in lymphoid organs. Evaluation of GFP expression in organ-derived cells and blood by flow cytometry demonstrated exclusive gene transfer into CD4(+) human lymphocytes. In bone marrow and spleen, memory T cells were preferentially hit. Toward therapeutic applications, we also show that CD4-LV can be used for HIV gene therapy, as well as for tumor therapy, by delivering chimeric Ag receptors. The potential for in vivo delivery of the FOXP3 gene was also demonstrated, making CD4-LV a powerful tool for inducible regulatory T cell generation. In summary, our work demonstrates the exclusive gene transfer into a T cell subset upon systemic vector administration opening an avenue toward novel strategies in immunotherapy.
Assuntos
Linfócitos T CD4-Positivos/metabolismo , Vetores Genéticos/genética , Lentivirus/genética , Transdução Genética , Animais , Medula Óssea/metabolismo , Linhagem Celular Tumoral , Transplante de Células/métodos , Células Cultivadas , Citometria de Fluxo , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Terapia Genética/métodos , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Humanos , Imunoterapia Adotiva/métodos , Leucócitos Mononucleares/metabolismo , Luciferases/genética , Luciferases/metabolismo , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCID , Baço/metabolismo , Timo/metabolismo , Transplante HeterólogoRESUMO
Hematopoietic stem cell (HSC)-based gene therapy holds promise for the cure of many diseases. The field is now moving toward the use of lentiviral vectors (LVs) as evidenced by 4 successful clinical trials. These trials used vesicular-stomatitis-virus-G protein (VSV-G)-LVs at high doses combined with strong cytokine-cocktail stimulation to obtain therapeutically relevant transduction levels; however, they might compromise the HSC character. Summarizing all these disadvantages, alternatives to VSV-G-LVs are urgently needed. We generated here high-titer LVs pseudotyped with a baboon retroviral envelope glycoprotein (BaEV-LVs), resistant to human complement. Under mild cytokine prestimulation to preserve the HSC characteristics, a single BaEV-LV application at a low dose, resulted in up to 90% of hCD34(+) cell transduction. Even more striking was that these new BaEV-LVs allowed, at low doses, efficient transduction of up to 30% of quiescent hCD34(+) cells, whereas high-dose VSV-G-LVs were insufficient. Importantly, reconstitution of NOD/Lt-SCID/γc(-/-) (NSG) mice with BaEV-LV-transduced hCD34(+) cells maintained these high transduction levels in all myeloid and lymphoid lineages, including early progenitors. This transduction pattern was confirmed or even increased in secondary NSG recipient mice. This suggests that BaEV-LVs efficiently transduce true HSCs and could improve HSC-based gene therapy, for which high-level HSC correction is needed for life-long cure.
Assuntos
Betaretrovirus/genética , Terapia Genética/métodos , Vetores Genéticos/genética , Células-Tronco Hematopoéticas , Lentivirus/genética , Transdução Genética , Proteínas do Envelope Viral/genética , Animais , Antígenos CD34 , Linhagem Celular , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Humanos , Macaca , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCIDAssuntos
Terapia Genética , Vetores Genéticos , Imunoterapia Ativa , Lentivirus , Glicoproteínas de Membrana/genética , Receptores de LDL/metabolismo , Transdução Genética , Proteínas do Envelope Viral/genética , Linfócitos B/imunologia , Linfócitos B/transplante , Células Cultivadas , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas , Humanos , Ativação Linfocitária , Linfócitos T/imunologia , Linfócitos T/transplante , Falha de Tratamento , Internalização do VírusRESUMO
Gene transfer into quiescent T and B cells is important for gene therapy and immunotherapy approaches. Previously, we generated lentiviral vectors (LVs) pseudotyped with Edmonston (Ed) measles virus (MV) hemagglutinin (H) and fusion (F) glycoproteins (H/F-LVs), which allowed efficient transduction of quiescent human T and B cells. However, a major obstacle in the use of H/F-LVs in vivo is that most of the human population is vaccinated against measles. As the MV humoral immune response is exclusively directed against the H protein of MV, we mutated the two dominant epitopes in H, Noose, and NE. LVs pseudotyped with these mutant H-glycoproteins escaped inactivation by monoclonal antibodies (mAbs) but were still neutralized by human serum. Consequently, we took advantage of newly emerged MV-D genotypes that were less sensitive to MV vaccination due to a different glycosylation pattern. The mutation responsible was introduced into the H/F-LVs, already mutated for Noose and NE epitopes. We found that these mutant H/F-LVs could efficiently transduce quiescent lymphocytes in the presence of high concentrations of MV antibody-positive human serum. Finally, upon incubation with total blood, mimicking the in vivo situation, the mutant H/F-LVs escaped MV antibody neutralization, where the original H/F-LVs failed. Thus, these novel H/F-LVs offer perspectives for in vivo lymphocyte-based gene therapy and immunotherapy.
Assuntos
Linfócitos B/imunologia , Lentivirus/genética , Vírus do Sarampo/genética , Linfócitos T/imunologia , Proteínas Virais de Fusão/genética , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , Linfócitos B/citologia , Linfócitos B/virologia , Linhagem Celular Tumoral , Cricetinae , Epitopos/genética , Epitopos/imunologia , Terapia Genética , Vetores Genéticos , Glicoproteínas/genética , Glicoproteínas/imunologia , Glicosilação , Hemaglutininas/genética , Hemaglutininas/imunologia , Humanos , Imunidade Humoral , Síndromes de Imunodeficiência/genética , Síndromes de Imunodeficiência/imunologia , Síndromes de Imunodeficiência/terapia , Imunoterapia , Lentivirus/imunologia , Vacina contra Sarampo/imunologia , Vírus do Sarampo/imunologia , Neoplasias/genética , Neoplasias/imunologia , Neoplasias/terapia , Linfócitos T/citologia , Linfócitos T/virologia , Transdução Genética , Proteínas Virais de Fusão/imunologiaRESUMO
Gene transfer into quiescent T and B cells is of importance for gene therapy and immunotherapy approaches to correct hematopoietic disorders. Previously, we generated lentiviral vectors (LVs) pseudotyped with the Edmonston measles virus (MV) hemagglutinin and fusion glycoproteins (Hgps and Fgps) (H/F-LVs), which, for the first time, allowed efficient transduction of quiescent human B and T cells. These target cells express both MV entry receptors used by the vaccinal Edmonston strain, CD46 and signaling lymphocyte activation molecule (SLAM). Interestingly, LVs pseudotyped with an MV Hgp, blind for the CD46 binding site, were completely inefficient for resting-lymphocyte transduction. Similarly, SLAM-blind H mutants that recognize only CD46 as the entry receptor did not allow stable LV transduction of resting T cells. The CD46-tropic LVs accomplished vector-cell binding, fusion, entry, and reverse transcription at levels similar to those achieved by the H/F-LVs, but efficient proviral integration did not occur. Our results indicate that both CD46 and SLAM binding sites need to be present in cis in the Hgp to allow successful stable transduction of quiescent lymphocytes. Moreover, the entry mechanism utilized appears to be crucial: efficient transduction was observed only when CD46 and SLAM were correctly engaged and an entry mechanism that strongly resembles macropinocytosis was triggered. Taken together, our results suggest that although vector entry can occur through the CD46 receptor, SLAM binding and subsequent signaling are also required for efficient LV transduction of quiescent lymphocytes to occur.
Assuntos
Antígenos CD/metabolismo , Técnicas de Transferência de Genes , Vetores Genéticos/genética , Glicoproteínas/genética , Lentivirus/genética , Ativação Linfocitária , Vírus do Sarampo/genética , Proteína Cofatora de Membrana/metabolismo , Receptores de Superfície Celular/metabolismo , Adulto , Antígenos CD/genética , Linfócitos B/imunologia , Linfócitos B/metabolismo , Linfócitos B/virologia , Humanos , Lentivirus/metabolismo , Vírus do Sarampo/química , Proteína Cofatora de Membrana/genética , Pinocitose , Receptores de Superfície Celular/genética , Membro 1 da Família de Moléculas de Sinalização da Ativação Linfocitária , Linfócitos T/imunologia , Linfócitos T/metabolismo , Linfócitos T/virologia , Transdução Genética , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/metabolismoRESUMO
Efficient gene transfer into quiescent T and B lymphocytes for gene therapy or immunotherapy purposes may allow the treatment of several genetic dysfunctions of the hematopoietic system, such as immunodeficiencies, and the development of novel therapeutic strategies for cancers and acquired diseases. Lentiviral vectors (LVs) can transduce many types of nonproliferating cells, with the exception of some particular quiescent cell types such as resting T and B cells. In T cells, completion of reverse transcription (RT), nuclear import, and subsequent integration of the vesicular stomatitis virus G protein pseudotyped LV (VSVG-LV) genome does not occur efficiently unless they are activated via the T-cell receptor (TCR) or by survival-cytokines inducing them to enter into the G(1b) phase of the cell cycle. Lentiviral transduction of B cells is another matter because even B-cell receptor-stimulation inducing proliferation is not sufficient to allow efficient VSVG-LV transduction. Recently, a new LV carrying the glycoproteins of measles virus (MV) at its surface was able to overcome vector restrictions in both quiescent T and B cells. Importantly, naive as well as memory T and B cells were efficiently transduced while no apparent activation, cell-cycle entry, or phenotypic switch were detected, which opens the door to a multitude of gene therapy and immunotherapy applications as reported here.
Assuntos
Linfócitos B/metabolismo , Terapia Genética/métodos , Vetores Genéticos/genética , Lentivirus/genética , Linfócitos T/metabolismo , Animais , Humanos , Imunoterapia , Transdução GenéticaAssuntos
Leucemia Linfocítica Crônica de Células B/genética , Transdução Genética , Vetores Genéticos , Proteínas de Fluorescência Verde/genética , Humanos , Técnicas In Vitro , Lentivirus/genética , Linfoma de Zona Marginal Tipo Células B/genética , Proteínas Recombinantes/genética , Fator de Transcrição STAT3/genéticaRESUMO
Up to now, no lentiviral vector (LV) tool existed to govern efficient and stable gene delivery into quiescent B lymphocytes, which hampers its application in gene therapy and immunotherapy areas. Here, we report that LVs incorporating measles virus (MV) glycoproteins, H and F, on their surface allowed transduction of 50% of quiescent B cells, which are not permissive to VSVG-LV transduction. This high transduction level correlated with B-cell SLAM expression and was not at cost of cell-cycle entry or B-cell activation. Moreover, the naive and memory phenotypes of transduced resting B cells were maintained. Importantly, H/F-LVs represent the first tool permitting stable transduction of leukemic cancer cells, B-cell chronic lymphocytic leukemia cells, blocked in G(0)/G(1) early phase of the cell cycle. Thus, H/F-LV transduction overcomes the limitations of current LVs by making B cell-based gene therapy and immunotherapy applications feasible. These new LVs will facilitate antibody production and the study of gene functions in these healthy and cancer immune cells.