RESUMO
Leukemias are among the most prevalent types of cancer worldwide. Bone marrow mesenchymal stem cells (MSCs) participate in the development of a suitable niche for hematopoietic stem cells, and are involved in the development of diseases such as leukemias, to a yet unknown extent. Here we described the effect of secretome of bone marrow MSCs obtained from healthy donors and from patients with acute myeloid leukemia (AML) on leukemic cell lineages, sensitive (K562) or resistant (K562-Lucena) to chemotherapy drugs. Cell proliferation, viability and death were evaluated, together with cell cycle, cytokine production and gene expression of ABC transporters and cyclins. The secretome of healthy MSCs decreased proliferation and viability of both K562 and K562-Lucena cells; moreover, an increase in apoptosis and necrosis rates was observed, together with the activation of caspase 3/7, cell cycle arrest in G0/G1 phase and changes in expression of several ABC proteins and cyclins D1 and D2. These effects were not observed using the secretome of MSCs derived from AML patients. In conclusion, the secretome of healthy MSCs have the capacity to inhibit the development of leukemia cells, at least in the studied conditions. However, MSCs from AML patients seem to have lost this capacity, and could therefore contribute to the development of leukemia.
Assuntos
Proliferação de Células , Leucemia Mieloide Aguda , Células-Tronco Mesenquimais , Humanos , Células-Tronco Mesenquimais/metabolismo , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Leucemia Mieloide Aguda/genética , Células K562 , Apoptose , Secretoma/metabolismo , Pessoa de Meia-Idade , Feminino , Masculino , Células da Medula Óssea/metabolismo , Linhagem da Célula/genética , Sobrevivência Celular , AdultoRESUMO
BACKGROUND: Common variable immunodeficiency (CVID) is a primary immunodeficiency characterized by chronic/recurrent respiratory infections, bronchiectasis, autoimmunity, inflammatory, gastrointestinal diseases and malignancies associated with a chronic inflammatory state and increased risk of osteoporosis and muscle loss. AIM: The aim of this study was to evaluate bone mineral density (BMD), body composition and their relationship with lymphocyte subpopulations in CVID patients. METHODS: Dual-energy X-ray absorptiometry was performed to assess BMD, lean mass, and fat mass in CVID patients. Peripheral blood CD4+, CD8+, and CD19+ cells were measured using flow cytometry. RESULTS: Thirty-three patients (37.3 ± 10.8 years old) were examined. Although only 11.8% of the individuals were malnourished (BMI <18.5 kg/m2), 27.7% of them had low skeletal muscle mass index (SMI), and 57.6% of them had low BMD. Patients with osteopenia/osteoporosis presented lower weight (p = 0.007), lean mass (p = 0.011), appendicular lean mass (p = 0.011), SMI (p = 0.017), and CD4+ count (p = 0.030). Regression models showed a positive association between CD4+ count and bone/muscle parameters, whereas CD19+ B cell count was only associated with muscle variables. Analysis of ROC curves indicated a cutoff value of CD4+ count (657 cells/mm3; AUC: 0.71, 95% CI 0.52-0.90) which was related to low BMD. Weight (p = 0.004), lean mass (p = 0.027), appendicular lean mass (p = 0.022), SMI (p = 0.029), total bone mineral content (p = 0.005), lumbar (p = 0.005), femoral neck (p = 0.035), and total hip BMD (p<0.001) were found to be lower in patients with CD4+ count below the cutoff. CONCLUSION: CVID patients presented with low BMD, which was associated with CD4+ count. Moreover, low muscle parameters were correlated with B cell count.
Assuntos
Imunodeficiência de Variável Comum , Osteoporose , Humanos , Adulto , Pessoa de Meia-Idade , Densidade Óssea/fisiologia , Imunodeficiência de Variável Comum/complicações , Imunodeficiência de Variável Comum/diagnóstico , Osteoporose/diagnóstico , Osteoporose/etiologia , Colo do Fêmur , Músculos , Linfócitos T CD4-PositivosRESUMO
Nodal mature T-cell lymphomas (nMTCL) comprises a heterogeneous group of rare malignancies with aggressive biological behavior and poor prognosis. Epigenetic phenomena, including mutations in genes that control DNA methylation and histone deacetylation, in addition to inactivating mutations in the RhoA GTPase, play a central role in its pathogenesis and constitute potential new targets for therapeutic intervention. Tumor mutational burden (TMB) reflects the process of clonal evolution, predicts response to anti-cancer therapies and has emerged as a prognostic biomarker in several solid neoplasms; however, its potential prognostic impact remains unknown in nMTCL. In this study, we conducted Sanger sequencing of formalin-fixed paraffin-embedded (FFPE) diagnostic tumor samples using a target-panel to search for recurrent mutations involving the IDH-1/IDH-2, TET-2, DNMT3A and RhoA genes in 59 cases of nMTCL. For the first time, we demonstrated that high-TMB, defined by the presence of ≥ two mutations involving the aforementioned genes, was associated with decreased overall survival in nMTCL patients treated with CHOP-like regimens. Additionally, high-TMB was correlated with bulky disease, lower overall response rate, and higher mortality. Future studies using larger cohorts may validate our preliminary results that indicate TMB as a potential molecular biomarker associated with adverse prognosis in nMTCL.
Assuntos
Linfoma de Células T Periférico , Neoplasias , Humanos , Metilação de DNA , Biomarcadores Tumorais/genética , Neoplasias/genética , Prognóstico , Linfoma de Células T Periférico/genética , Mutação , Genes Reguladores , Epigênese Genética , Proteína rhoA de Ligação ao GTP/genéticaRESUMO
Cardiac transplantation of adipose-derived stem cells (ASC) modulates the post-myocardial infarction (post-MI) repair response. Biomolecules secreted or shuttled within extracellular vesicles, such as exosomes, may participate in the concerted response. We investigated the exosome's microRNAs due to their capacity to fine-tune gene expression, potentially affecting the multicellular repair response. We profiled and quantified rat ASC-exosome miRNAs and used bioinformatics to select uncharacterized miRNAs down-regulated in post-MI related to cardiac repair. We selected and validated miR-196a-5p and miR-425-5p as candidates for the concerted response in neonatal cardiomyocytes, cardiac fibroblasts, endothelial cells, and macrophages using a high-content screening platform. Both miRNAs prevented cardiomyocyte ischemia-induced mitochondrial dysfunction and reactive oxygen species production, increased angiogenesis, and polarized macrophages toward the anti-inflammatory M2 immunophenotype. Moreover, miR-196a-5p reduced and reversed myofibroblast activation and decreased collagen expression. Our data provide evidence that the exosome-derived miR-196a-5p and miR-425-5p influence biological processes critical to the concerted multicellular repair response post-MI.
Assuntos
Exossomos , MicroRNAs , Infarto do Miocárdio , Tecido Adiposo/metabolismo , Animais , Células Endoteliais/metabolismo , Exossomos/genética , Exossomos/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Infarto do Miocárdio/genética , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/terapia , Miócitos Cardíacos/metabolismo , Ratos , Células-TroncoRESUMO
BACKGROUND: Nodal peripheral T-cell lymphoma (nPTCL) constitute a heterogeneous group of neoplasms with aggressive behavior and poor-survival. They are more prevalent in Latin America and Asia, although data from Brazil are scarce. Its primary therapy is still controversial and ineffective. Therefore, we aim to describe clinical-epidemiological characteristics, outcomes, predictors factors for survival and compare the results of patients treated with CHOP and CHOEP regimens. METHODS: Retrospective, observational and single-center study involving 124 nPTCL patients from Brazil treated from 2000 to 2019. RESULTS: With a median follow-up of 23.7 months, the estimated 2-year overall survival (OS) and progression-free survival (PFS) were 59.2% and 37.3%, respectively. The median age was 48.5 years and 57.3% (71/124) were male, 81.5% (101/124) had B-symptoms, 88.7% (110/124) had advanced disease (stage III/IV) and 58.1% (72/124) presented International Prognostic Index (IPI) score ≥3, reflecting a real-life cohort. ORR to first-line therapy was 58.9%, 37.9% (N = 47) received CHOP-21 and 35.5% (N = 44) were treated with CHOEP-21; 30.1% (37/124) underwent to consolidation with involved field radiotherapy (IF-RT) and 32.3% (40/124) were consolidated with autologous hematopoietic stem cell transplantation (ASCT). The overall response rate (ORR) was similar for CHOP-21 (76.6%) and CHOEP-21 (65.9%), P = .259. Refractory disease was less frequent in the CHOEP-21 group (4.5% vs. 21.2%, P = .018). However, few patients were able to complete 6-cycles of CHOEP-21 (31.8%) than to CHOP-21 (61.7%), P = .003. Delays ≥2 weeks among the cycles of chemotherapy were more frequent for patients receiving CHOEP-21 (43.1% vs. 10.6%), P = .0004, as well as the toxicities, including G3-4 neutropenia (88% vs. 57%, P = .001), febrile neutropenia (70% vs. 38%, P = .003) and G3-4 thrombocytopenia (63% vs. 27%, P = .0007). The 2-year OS was higher for CHOP (78.7%) than CHOEP group (61.4%), P = .05, as well as 2-year PFS (69.7% vs. 25.0%, P < .0001). In multivariate analysis, high LDH (HR 3.38, P = .007) was associated with decreased OS. CR at first line (HR: 0.09, P < .001) and consolidation with ASCT (HR: 0.08, P = .015) were predictors of increased OS. CONCLUSION: In the largest cohort of nPTCL from Latin America, patients had poor survival and high rate of chemo-resistance. In our cohort, the addition of etoposide to the CHOP-21 backbone showed no survival benefit and was associated with high-toxicity and frequent treatment interruptions. Normal LDH values, obtaintion of CR and consolidation with ASCT were independent factors associated with better outcomes.
Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica , Linfoma de Células T Periférico , Humanos , Masculino , Pessoa de Meia-Idade , Feminino , Etoposídeo , Brasil/epidemiologia , Estudos Retrospectivos , Vincristina/efeitos adversos , Ciclofosfamida/efeitos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Prednisona/efeitos adversos , Doxorrubicina/efeitos adversos , Prednisolona/uso terapêutico , Linfoma de Células T Periférico/patologiaRESUMO
Oxysterols are the products of cholesterol oxidation. They have a wide range of effects on several cells, organs, and systems in the body. Oxysterols also have an influence on the physiology of the immune system, from immune cell maturation and migration to innate and humoral immune responses. In this regard, oxysterols have been involved in several diseases that have an immune component, from autoimmune and neurodegenerative diseases to inflammatory diseases, atherosclerosis, and cancer. Here, we review data on the participation of oxysterols, mainly 25-hydroxycholesterol and 7α,25-dihydroxycholesterol, in the immune system and related diseases. The effects of these oxysterols and main oxysterol receptors, LXR and EBI2, in cells of the immune system (B cells, T cells, macrophages, dendritic cells, oligodendrocytes, and astrocytes), and in immune-related diseases, such as neurodegenerative diseases, intestinal diseases, cancer, respiratory diseases, and atherosclerosis, are discussed.
Assuntos
Aterosclerose , Oxisteróis , Linfócitos B , Humanos , Macrófagos , Receptores Acoplados a Proteínas GRESUMO
BACKGROUND: Nodal peripheral T-cell lymphomas (nPTCL) encompass a heterogeneous group of mature and aggressive lymphoid malignancies, including peripheral T-cell lymphoma, not otherwise specified (PTCL, NOS), angioimmunoblastic T-cell lymphoma (AITL) and anaplastic large cell lymphoma (ALCL) ALK-positive and ALK-negative. Their differential diagnosis and prognosis are an issue in clinical practice. Accurate biomarkers to define the different subtypes of nPTCL and to stratify their prognosis are essential to improve their treatment approach. The aim of this study was to test the prognostic impact of GATA-3 gene expression, and its capability to discriminate the different subtypes of nPTCL. PATIENTS AND METHODS: We retrospectively assessed GATA-3 gene expression by quantitative real time PCR (qRT-PCR) from neoplastic biopsies in Formalin-Fixed Paraffin-Embedded samples (FFPE) of 80 patients with nPTCL that were admitted in a single cancer treatment center from 2000 to 2017. RESULTS: Median age was 49 years-old (IqR 34-59), 43/80 (53.7%) were male. Median follow-up was 1.72 years, 36.3% were classified as PTCL, NOS, 31.2% as ALK-negative ALCL, 21.2% as ALK-positive ALCL and 11.3% as AITL. The majority of cases had advanced stage cancer (III/IV). Two-year estimated overall survival (OS) and progression-free survival (PFS) were 52.2% and 39.5%, respectively. The median GATA-3 gene expression level was 0.49 (range 0 - 7.07) in all cohort, with 0.11 for ALK-positive ALCL, 0.46 for ALK-negative ALCL, 0.86 for PTCL, NOS and 0.67 for AITL. The difference of GATA-3 gene expression among distinct variants of nPTCL was statistically significant (p < 0.001). GATA-3 gene expression levels ≥ 0.71 discriminate PTCL, NOS from ALK-negative ALCL and AITL with sensitivity of 62.0% and specificity of 80.3%. GATA-3 gene expression level ≥ median was associated with poor 2-year OS for PTCL, NOS (46.7% versus 21.4%, p = 0.04) and ALK-negative ALCL (85.7% versus 54.5%, p = 0.04). In multivariate analysis, GATA-3 expression ≥ median was an independent factor associated with poor OS in nPTCL (HR: 2.34, 95% CI: 1.12-4.39, p = 0.041). CONCLUSION: GATA-3 gene overexpression may be an important biomarker associated with poor prognosis in PTCL, NOS and ALK-negative ALCL. Moreover, it may also discriminate different subtypes of nPTCL. Further studies with larger series of patients should confirm our findings.
Assuntos
Fator de Transcrição GATA3 , Linfoma Anaplásico de Células Grandes , Linfoma de Células T Periférico , Adulto , Biomarcadores , Feminino , Fator de Transcrição GATA3/genética , Humanos , América Latina , Linfoma Anaplásico de Células Grandes/diagnóstico , Linfoma Anaplásico de Células Grandes/genética , Linfoma de Células T Periférico/diagnóstico , Linfoma de Células T Periférico/genética , Masculino , Pessoa de Meia-Idade , Prognóstico , Receptores Proteína Tirosina Quinases , Estudos RetrospectivosRESUMO
Infection by the protozoan Trypanosoma cruzi causes Chagas disease cardiomyopathy (CCC) and can lead to arrhythmia, heart failure and death. Chagas disease affects 8 million people worldwide, and chronic production of the cytokines IFN-γ and TNF-α by T cells together with mitochondrial dysfunction are important players for the poor prognosis of the disease. Mitochondria occupy 40% of the cardiomyocytes volume and produce 95% of cellular ATP that sustain the life-long cycles of heart contraction. As IFN-γ and TNF-α have been described to affect mitochondrial function, we hypothesized that IFN-γ and TNF-α are involved in the myocardial mitochondrial dysfunction observed in CCC patients. In this study, we quantified markers of mitochondrial dysfunction and nitro-oxidative stress in CCC heart tissue and in IFN-γ/TNF-α-stimulated AC-16 human cardiomyocytes. We found that CCC myocardium displayed increased levels of nitro-oxidative stress and reduced mitochondrial DNA as compared with myocardial tissue from patients with dilated cardiomyopathy (DCM). IFN-γ/TNF-α treatment of AC-16 cardiomyocytes induced increased nitro-oxidative stress and decreased the mitochondrial membrane potential (ΔΨm). We found that the STAT1/NF-κB/NOS2 axis is involved in the IFN-γ/TNF-α-induced decrease of ΔΨm in AC-16 cardiomyocytes. Furthermore, treatment with mitochondria-sparing agonists of AMPK, NRF2 and SIRT1 rescues ΔΨm in IFN-γ/TNF-α-stimulated cells. Proteomic and gene expression analyses revealed that IFN-γ/TNF-α-treated cells corroborate mitochondrial dysfunction, transmembrane potential of mitochondria, altered fatty acid metabolism and cardiac necrosis/cell death. Functional assays conducted on Seahorse respirometer showed that cytokine-stimulated cells display decreased glycolytic and mitochondrial ATP production, dependency of fatty acid oxidation as well as increased proton leak and non-mitochondrial oxygen consumption. Together, our results suggest that IFN-γ and TNF-α cause direct damage to cardiomyocytes' mitochondria by promoting oxidative and nitrosative stress and impairing energy production pathways. We hypothesize that treatment with agonists of AMPK, NRF2 and SIRT1 might be an approach to ameliorate the progression of Chagas disease cardiomyopathy.
Assuntos
Cardiomiopatia Chagásica/metabolismo , Interferon gama/metabolismo , Mitocôndrias/metabolismo , Miócitos Cardíacos/metabolismo , Estresse Oxidativo/fisiologia , Fator de Necrose Tumoral alfa/metabolismo , Adolescente , Adulto , Idoso , Cardiomiopatia Chagásica/patologia , Cardiomiopatia Chagásica/fisiopatologia , Criança , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Mitocôndrias/patologia , Miócitos Cardíacos/patologia , Adulto JovemRESUMO
Aging is characterized by a progressive increase in oxidative stress, which favors lipid peroxidation and the formation of cholesterol oxide derivatives, including 7ß-hydroxycholesterol (7ß-OHC). This oxysterol, which is known to trigger oxidative stress, inflammation, and cell death, could contribute to the aging process and age-related diseases, such as sarcopenia. Identifying molecules or mixtures of molecules preventing the toxicity of 7ß-OHC is therefore an important issue. This study consists of determining the chemical composition of Tunisian Pistacia lentiscus L. seed oil (PLSO) used in the Tunisian diet and evaluating its ability to counteract the cytotoxic effects induced by 7ß-OHC in murine C2C12 myoblasts. The effects of 7ß-OHC (50 µM; 24 h), associated or not with PLSO, were studied on cell viability, oxidative stress, and on mitochondrial and peroxisomal damages induction. α-Tocopherol (400 µM) was used as the positive control for cytoprotection. Our data show that PLSO is rich in bioactive compounds; it contains polyunsaturated fatty acids, and several nutrients with antioxidant properties: phytosterols, α-tocopherol, carotenoids, flavonoids, and phenolic compounds. When associated with PLSO (100 µg/mL), the 7ß-OHC-induced cytotoxic effects were strongly attenuated. The cytoprotection was in the range of those observed with α-tocopherol. This cytoprotective effect was characterized by prevention of cell death and organelle dysfunction (restoration of cell adhesion, cell viability, and plasma membrane integrity; prevention of mitochondrial and peroxisomal damage) and attenuation of oxidative stress (reduction in reactive oxygen species overproduction in whole cells and at the mitochondrial level; decrease in lipid and protein oxidation products formation; and normalization of antioxidant enzyme activities: glutathione peroxidase (GPx) and superoxide dismutase (SOD)). These results provide evidence that PLSO has similar antioxidant properties than α-tocopherol used at high concentration and contains a mixture of molecules capable to attenuate 7ß-OHC-induced cytotoxic effects in C2C12 myoblasts. These data reinforce the interest in edible oils associated with the Mediterranean diet, such as PLSO, in the prevention of age-related diseases, such as sarcopenia.
RESUMO
Oxysterols are oxidized derivatives of cholesterol produced by enzymatic activity or non-enzymatic pathways (auto-oxidation). The oxidation processes lead to the synthesis of about 60 different oxysterols. Several oxysterols have physiological, pathophysiological, and pharmacological activities. The effects of oxysterols on cell death processes, especially apoptosis, autophagy, necrosis, and oxiapoptophagy, as well as their action on cell proliferation, are reviewed here. These effects, also observed in several cancer cell lines, could potentially be useful in cancer treatment. The effects of oxysterols on cell differentiation are also described. Among them, the properties of stimulating the osteogenic differentiation of mesenchymal stem cells while inhibiting adipogenic differentiation may be useful in regenerative medicine.
Assuntos
Morte Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Oxisteróis/farmacologia , Animais , Humanos , Oxirredução/efeitos dos fármacosRESUMO
Mesenchymal stem cells have the ability to differentiate into several cell types when exposed to determined substances, including oxysterols. Oxysterols are cholesterol products derived from its auto-oxidation by reactive species or from enzymatic action. They are present in the body in low quantities under physiological conditions and exhibit several physiological and pharmacological actions according to both the types of oxysterol and tissue. Some of them are cytotoxic while others have been shown to promote cell differentiation through the action on several different receptors, such as nuclear LXR receptors and Smoothened receptor ligands. Here, we review the main pathways by which oxysterols have been associated with cell differentiation and death of mesenchymal stem cells.
Assuntos
Células-Tronco Mesenquimais , Oxisteróis , Diferenciação Celular , Humanos , Células-Tronco Mesenquimais/citologia , Oxisteróis/farmacologiaRESUMO
BACKGROUND: PCNSL is a rare extranodal NHL with poor prognosis. Tumorigenesis has been associated with hyperactivation of BCR downstream and NFkB pathways. We studied the prognosis of the relative expression profile of target genes of NFkB pathway (MYC, BCL2), the essential transcriptional regulator in hematopoiesis LMO2, the checkpoint regulation pathway MGMT, the transcription factor POU2F1, the immune checkpoint gene PDCD1, and the proto-oncogene and transcriptional repressor gene BCL6 and its proteins in PCNSL. METHODS: This study is a retrospective cohort study; 35 immunocompetent PCNSL-DLBCL patients had their gene expression (RT-qPCR) normalized to internal control gene GUSB. RESULTS: Median patient age was 62 years, median OS was 42.6 months (95% CI: 26.6-58.6), PFS was 41 months (95% CI: 19.7-62.4), and DFS was 59.2 months (95% CI 31.9-86.6). A moderate correlation was found between the gene/protein expressions of MYC (kappa = 0.596, p = .022) and of BCL2 (kappa = 0.426, p = .042). Relative gene expression of MYC ≥ 0.201 (HR 6.117; p = .003) was associated with worse 5-year OS. Relative gene expression of MYC ≥ 0.201 (HR 3.96; p = .016) and MGMT ≥ 0.335 (HR 3.749; p = .056) was associated with worse PFS. Age > 60 years and IELSG score moderate/high were also associated with worse prognosis. CONCLUSIONS: Overexpression of MYC and overexpression of MGMT were prognostic markers associated with unfavorable clinical outcomes in PCNSL.
Assuntos
Neoplasias do Sistema Nervoso Central , Linfoma Difuso de Grandes Células B , Sistema Nervoso Central , Neoplasias do Sistema Nervoso Central/genética , Marcadores Genéticos , Humanos , Pessoa de Meia-Idade , Prognóstico , Proto-Oncogene Mas , Proteínas Proto-Oncogênicas c-bcl-2 , Proteínas Proto-Oncogênicas c-bcl-6/genética , Estudos RetrospectivosRESUMO
Although papillary thyroid carcinoma (PTC) has a good prognosis, 20-90% of patients show metastasis to regional lymph nodes and 10-15% of patients show metastasis to distant sites. Metastatic disease represents the main clinical challenge that impacts survival rate. We previously showed that LIMD2 was a novel metastasis-associated gene. In this study, to interrogate the role of LIMD2 in cancer invasion and metastasis, we used CRISPR-mediated knockout (KO) of LIMD2 in PTC cells (BCPAP and TPC1). Western blot and high-content screening (HCS) analysis confirmed functional KO of LIMD2. LIMD2 KO reduced in vitro invasion and migration. Ultrastructural analyses showed that cell polarity and mitochondria function and morphology were restored in LIMD2 KO cells. To unveil the signals supervising these phenotypic changes, we employed phospho-protein array. Several members of the MAPK superfamily showed robust reduction in phosphorylation. A Venn diagram displayed the overlap of kinases with reduced phosphorylation in both cell lines and showed that they were able to initiate or sustain the epithelial-mesenchymal transition (EMT) and DNA damage checkpoint. Flow cytometry and HCS validation analyses further corroborated the phospho-protein array data. Collectively, our findings show that LIMD2 enhances phosphorylation of kinases associated with EMT and invasion. Through cooperation with different kinases, it contributes to the increased genomic instability that ultimately promotes PTC progression.
Assuntos
Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Proteínas de Neoplasias/uso terapêutico , Câncer Papilífero da Tireoide/genética , Linhagem Celular Tumoral , Transição Epitelial-Mesenquimal , Feminino , Humanos , Masculino , Metástase Neoplásica , Proteínas de Neoplasias/farmacologia , Câncer Papilífero da Tireoide/patologiaRESUMO
Ferroptosis is a type of cell death that was described less than a decade ago. It is caused by the excess of free intracellular iron that leads to lipid (hydro) peroxidation. Iron is essential as a redox metal in several physiological functions. The brain is one of the organs known to be affected by iron homeostatic balance disruption. Since the 1960s, increased concentration of iron in the central nervous system has been associated with oxidative stress, oxidation of proteins and lipids, and cell death. Here, we review the main mechanisms involved in the process of ferroptosis such as lipid peroxidation, glutathione peroxidase 4 enzyme activity, and iron metabolism. Moreover, the association of ferroptosis with the pathophysiology of some neurodegenerative diseases, namely Alzheimer's, Parkinson's, and Huntington's diseases, has also been addressed.
Assuntos
Doença de Alzheimer/metabolismo , Ferroptose , Doença de Huntington/metabolismo , Ferro/metabolismo , Neurônios/metabolismo , Doença de Parkinson/metabolismo , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/genética , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Araquidonato 15-Lipoxigenase/genética , Araquidonato 15-Lipoxigenase/metabolismo , Ácido Araquidônico/metabolismo , Encéfalo/metabolismo , Encéfalo/patologia , Membrana Celular/metabolismo , Membrana Celular/patologia , Ácidos Graxos Insaturados/metabolismo , Glutationa/metabolismo , Humanos , Doença de Huntington/genética , Doença de Huntington/patologia , Peroxidação de Lipídeos , Neurônios/patologia , Estresse Oxidativo , Doença de Parkinson/genética , Doença de Parkinson/patologia , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/deficiênciaRESUMO
BACKGROUND: Nanoparticles show promise for theranostic applications in cancer. The metal-based nanoparticles can be used both as photosensitizers and delivery vehicles. In bimetallic particles based on gold or silver and iron, a combination of the plasmonic features of the gold or silver components with the magnetic properties of the iron makes these hybrid nanomaterials suitable for both imaging and therapeutic applications. Herein, we discuss toxicity and cell internalization of metallic (silver and gold) and bimetallic (silver-iron, gold-iron, and silver-gold) aminolevulinic acid (ALA) nanoparticles. ALA can control the production of an intracellular photosensitizer, protoporphyrin IX (PpIX), commonly used in photodynamic therapy. METHODS: Nanoparticles were synthesized by photoreduction method and characterized by UV/Vis spectra, Zeta potential, FTIR, XRD, and transmission electron microscopy. The amount of singlet oxygen generation by a yellow LED, and ultrasound was studied for gold, gold-iron, and silver-gold nanoparticles. Cytotoxicity assays of MCF-7 in the presence of nanoparticles were performed, and PpIX fluorescence was quantified by high content screening (HCS). RESULTS: Red fluorescence observed after 24â¯h of nanoparticles incubation on MCF-7 cells, indicated that the ALA in surface of nanoparticles was efficiently converted to PpIX. The best results for singlet oxygen generation with LED or ultrasound irradiation were obtained with ALA:AgAuNPs. CONCLUSIONS: The studied nanoparticles present the potential to deliver aminolevulinic acid to breast cancer cells efficiently, generate singlet oxygen, and convert ALA into PpIX inside the cells allowing photodiagnosis and therapies such as photodynamic and sonodynamic therapies.
Assuntos
Neoplasias da Mama , Nanopartículas Metálicas , Fotoquimioterapia , Ácido Aminolevulínico/farmacologia , Ácido Aminolevulínico/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Ouro/uso terapêutico , Humanos , Ferro/uso terapêutico , Células MCF-7 , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Protoporfirinas/uso terapêutico , PrataRESUMO
Human T-cell lymphotropic virus type-1 (HTLV-1) is a pathogenic retrovirus that is associated with adult T-cell leukemia/lymphoma (ATL). Genetic instability is the hallmark of ATL. Cell cycle progression is needed for virus particle reproduction. HTLV-1 encoded Tax protein ultimately disrupts the mitotic spindle checkpoint, leading to incorrect chromosome segregation, resulting in aneuploidy. Cell cycle abnormalities have been described in T cells transfected with HTLV-1 virus in vitro, but not in HTLV-1 asymptomatic carriers. PTTG1 and HTLV-1 viral protein Tax exhibit a cooperative transforming activity. Overexpressed PTTG1 results in chromosome instability and aneuploidy, which has been suggested as a mechanism underlying PTTG1 transforming activity. Here we aimed to investigate cell cycle, DNA ploidy and PTTG1 mRNA expression in CD4+ and CD8+ T cells in healthy subjects (HS), HTLV-1 asymptomatic carriers and ATL patients. We have identified that HTLV-1 asymptomatic carriers have shown DNA aneuploidy and cell cycle arrest at cell cycle phase G0/G1 in CD4+ T cells. CD8+ T cells of HTLV-1 asymptomatic carriers also demonstrated DNA aneuploidy but without alteration in cell cycle. In ATL, CD4+ and CD8+ T cells present a higher number of cells in cell cycle S-phase and PTTG1 overexpression. These studies provide insight into malignant transformation of HTLV-1 asymptomatic carriers to ATL patients.
RESUMO
BACKGROUND: Splenic marginal zone lymphoma (SMZL) is a rare lymphoid B-cell malignant neoplasm with primary involvement of the spleen. It is a chronic disease, of indolent behavior and prolonged survival. However, 25% of cases have higher biological aggressiveness, propensity for histological transformation to high grade B-cell non-Hodgkin lymphoma and shortened survival. Recognition of these cases of reserved outcome is important for selecting a risk-adapted therapeutic approach in a resource-poor settings. METHODS: We described clinical and epidemiological characteristics, survival analysis and prognostic factors in a retrospective cohort of 39 SMZL patients, treated in Latin America. RESULTS: We observed a predominance of female (71.8%), median age of 63 years and higher incidence of B symptoms (56.4%) and extra-splenic involvement (87.1%) than in European and North-American series. With a median follow-up of 8.7 years (0.6-20.2 years), estimated 5-year overall survival (OS) and progression-free survival (PFS) were 76.9% and 63.7%, respectively. Factors with adverse prognostic impact on OS and PFS were Hb < 100 g/L, platelet count < 100 x 109/L, albumin < 3.5 g/dL, LDH > 480 U/L and high-risk Arcaini and SMZL/WG scores. Despite a relative low number of patients, no superiority was observed among the therapeutic regimens used including rituximab monotherapy, splenectomy and cytotoxic chemotherapy. CONCLUSION: Therefore, in resource-poor settings, where access to immunotherapy is not universal for all SMZL patients, we suggest that first-line should consist on rituximab therapy for elderly patients or with high surgical risk or with at least 1 risk factor identified in our study. Remainders can be safely managed with splenectomy.
Assuntos
Antineoplásicos Imunológicos/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Países em Desenvolvimento , Linfoma de Zona Marginal Tipo Células B/terapia , Rituximab/uso terapêutico , Esplenectomia , Adulto , Idoso , Análise de Variância , Antineoplásicos Imunológicos/administração & dosagem , Brasil/epidemiologia , Institutos de Câncer , Ciclofosfamida/uso terapêutico , Países em Desenvolvimento/estatística & dados numéricos , Esquema de Medicação , Feminino , Recursos em Saúde , Humanos , Linfoma de Zona Marginal Tipo Células B/sangue , Linfoma de Zona Marginal Tipo Células B/mortalidade , Masculino , Pessoa de Meia-Idade , Prednisona/uso terapêutico , Prognóstico , Intervalo Livre de Progressão , Estudos Retrospectivos , Rituximab/administração & dosagem , Neoplasias Esplênicas , Avaliação de Sintomas , Vincristina/uso terapêutico , Conduta ExpectanteRESUMO
The nature of the early post-natal immune response in rodents appears to influence cardiac regeneration even though the underlying molecules remain poorly understood. Consistent with this idea, we show now significant changes in the expression of immune and cell movement gene pathways in heart samples from 1- and 7-day-old rats with ventricle resection. We then tested whether conditioned media from adult M2 anti-inflammatory macrophages target neonatal cardiac cells to a pro-regenerative like phenotype compared to the M1 pro-inflammatory macrophages. We found that M2 compared to M1 macrophage-conditioned media upregulates neonatal cardiomyocyte proliferation, suppresses myofibroblast-induced differentiation and stimulates endothelial cell tube formation. Using a cytokine array, we selected four candidate cytokine molecules uniquely expressed in M2 macrophage-conditioned media and showed that two of them (IL-4 and IL-6) induce endothelial cell proliferation whilst IL-4 promotes proliferation in neonatal cardiomyocytes and prevents myofibroblast-induced collagen type I secretion. Altogether, we provided evidence that adult M2 macrophage-conditioned media displays a paracrine beneficial pro-regenerative response in target cardiac cells and that IL-4 and IL-6 recapitulate, at least in part, these pleiotropic effects. Further characterization of macrophage immune phenotypes and their secreted molecules may give rise to novel therapeutic approaches for post-natal cardiac repair.
Assuntos
Células Endoteliais/metabolismo , Interleucina-4/metabolismo , Interleucina-6/metabolismo , Macrófagos/metabolismo , Miocárdio/metabolismo , Comunicação Parácrina , Animais , Animais Recém-Nascidos , Meios de Cultivo Condicionados , Células Endoteliais/citologia , Macrófagos/citologia , Miocárdio/citologia , Miócitos Cardíacos , RatosRESUMO
OBJECTIVE: To describe the first series of cases of autologous chondrocyte implantation (ACI) in collagen membrane performed in Brazil. METHODS: ACI was performed in 12 knees of 11 patients, aged 32.1 ± 10.9 years, with 5.3 ± 2.6 cm2 full-thickness knee cartilage lesions, with a six-month minimum follow-up. Two surgical procedures were performed: arthroscopic cartilage biopsy for isolation and expansion of chondrocytes, which were seeded onto collagen membrane and implanted in the lesion site; the characterization of cultured cells and implant was performed using immunofluorescence for type II collagen (COL2) for cell viability and electron microscopy of the implant. Clinical safety, KOOS and IKDC scores and magnetic resonance imaging were evaluated. We used repeated-measures ANOVA and post-hoc comparisons at α = 5%. RESULTS: COL2 was identified in the cellular cytoplasm, cell viability was higher than 95% and adequate distribution and cell adhesion were found in the membrane. The median follow-up was 10.9 months (7 to 19). We had two cases of arthrofibrosis, one of graft hypertrophy and one of superficial infection as complications, but none compromising clinical improvement. KOOS and IKDC ranged from 71.2 ± 11.44 and 50.72 ± 14.10, in preoperative period, to 85.0 ± 4.4 and 70.5 ± 8.0, at 6 months (p = 0.007 and 0.005). MRI showed regenerated tissue compatible with hyaline cartilage. CONCLUSION: ACI in collagen membrane was feasible and safe in a short-term follow-up, presenting regenerated formation visualized by magnetic resonance imaging and improved clinical function. Level of evidence IV, Case series.
OBJETIVO: Descrever a primeira série de casos de transplante autólogo de condrócitos (TAC) em membrana de colágeno realizada no Brasil. MÉTODOS: Doze joelhos de onze pacientes, com idade de 32,1 ± 10,9 anos, com lesões de cartilagem de espessura total do joelho de tamanho de 5,3 ± 2,6 cm 2 foram submetidos ao TAC, com seguimento mínimo de seis meses. Realizamos dois procedimentos cirúrgicos: biópsia artroscópica de cartilagem para isolamento e expansão de condrócitos, que foram semeados em uma membrana de colágeno implantada no leito da lesão. Foi realizada caracterização com imunofluorescência para colágeno tipo II (COL2) de células cultivadas e implantes, viabilidade celular e microscopia eletrônica no implante. Foram avaliados a segurança clínica, os escores funcionais KOOS e IKDC e a ressonância magnética. Utilizamos teste ANOVA para medidas repetidas, com comparações post-hoc, α = 5%. RESULTADOS: COL2 foi identificado no citoplasma da célula, viabilidade celular foi superior a 95% e houve distribuição adequada e adesão celular na membrana. O seguimento mediano foi de 10,9 meses (7 a 19). Como complicações, ocorreram dois casos de artrofibrose, um de hipertrofia do enxerto e um de infecção superficial, nenhum deles havendo comprometimento da melhora clínica. Escalas KOOS e IKDC passaram de 71,2 ± 11,44 e 50,72 ± 14,10, no pré-operatório, para 85,0 ± 4,4 e 70,5 ± 8,0, aos 6 meses (p = 0,007 e 0,005). Ressonância magnética mostrou tecido regenerado compatível com cartilagem hialina. CONCLUSÃO: TAC em membrana de colágeno foi viável e seguro em seguimento de curto prazo, apresentando formação de regenerado visualizado através de imagens de ressonância magnética e melhora de função clínica. Nível de evidência IV, Série de casos.
RESUMO
Melanoma is characterized by high heterogeneity and plasticity, most likely due to the presence of mutated melanocyte stem cells or immature progenitor cells in the skin that serves as precursors to melanoma. In the present study, for the first time, we identified rare cells in the murine melanoma B16F10, and human A2058 and SK-MEL-28 cell lines that express pluripotency markers, including Oct4, Nanog, Sox2 and a marker of melanoma cancer cells (ALDH1/2). These cells are very small with round morphology and they grow onto melanoma cells, thereby demonstrating feeder layer dependence similar to that of other pluripotent cells. These cells underwent self-renewal, symmetric and asymmetric division. We called these cells murine very small cancer stem cells (VSCSC). VSCSC were also found in B16F10-derived clones after 3-5 consecutive passages, where they occur as single cells or as small colonies, nevertheless, always using melanoma cells as feeders. These cells formed melanospheres enriched with Oct4-and ALDH1/2-positive cells. We also evaluated the possible effect of VSCSC that presented in the parental cell line (B16F10) and in clones based on their functional characteristics. We found that VCSCS present in the B16F10 cell line reappearing in their clones were required for continuous tumor growth and were responsible for melanoma cell heterogeneity and plasticity rather than directly affecting functional characteristics of melanoma cells. Our data, together with those of previous reports suggested the existence of melanoma-competent melanocyte stem cells, which corroborate the hypothesis of the existence of tumor-initiating cells and cancer stem cell hierarchies, at least in melanoma.