Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell ; 179(1): 251-267.e24, 2019 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-31539496

RESUMO

In situ transgenesis methods such as viruses and electroporation can rapidly create somatic transgenic mice but lack control over copy number, zygosity, and locus specificity. Here we establish mosaic analysis by dual recombinase-mediated cassette exchange (MADR), which permits stable labeling of mutant cells expressing transgenic elements from precisely defined chromosomal loci. We provide a toolkit of MADR elements for combination labeling, inducible and reversible transgene manipulation, VCre recombinase expression, and transgenesis of human cells. Further, we demonstrate the versatility of MADR by creating glioma models with mixed reporter-identified zygosity or with "personalized" driver mutations from pediatric glioma. MADR is extensible to thousands of existing mouse lines, providing a flexible platform to democratize the generation of somatic mosaic mice. VIDEO ABSTRACT.


Assuntos
Neoplasias Encefálicas/genética , Modelos Animais de Doenças , Marcação de Genes/métodos , Loci Gênicos/genética , Glioma/genética , Mutagênese Insercional/métodos , Transgenes/genética , Animais , Linhagem Celular Tumoral , Feminino , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Células-Tronco Neurais/metabolismo , Recombinases/metabolismo , Transfecção
2.
Cancer Metab ; 6: 4, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29692895

RESUMO

BACKGROUND: There is considerable interest in defining the metabolic abnormalities of IDH mutant tumors to exploit for therapy. While most studies have attempted to discern function by using cell lines transduced with exogenous IDH mutant enzyme, in this study, we perform unbiased metabolomics to discover metabolic differences between a cohort of patient-derived IDH1 mutant and IDH wildtype gliomaspheres. METHODS: Using both our own microarray and the TCGA datasets, we performed KEGG analysis to define pathways differentially enriched in IDH1 mutant and IDH wildtype cells and tumors. Liquid chromatography coupled to mass spectrometry analysis with labeled glucose and deoxycytidine tracers was used to determine differences in overall cellular metabolism and nucleotide synthesis. Radiation-induced DNA damage and repair capacity was assessed using a comet assay. Differences between endogenous IDH1 mutant metabolism and that of IDH wildtype cells transduced with the IDH1 (R132H) mutation were also investigated. RESULTS: Our KEGG analysis revealed that IDH wildtype cells were enriched for pathways involved in de novo nucleotide synthesis, while IDH1 mutant cells were enriched for pathways involved in DNA repair. LC-MS analysis with fully labeled 13C-glucose revealed distinct labeling patterns between IDH1 mutant and wildtype cells. Additional LC-MS tracing experiments confirmed increased de novo nucleotide synthesis in IDH wildtype cells relative to IDH1 mutant cells. Endogenous IDH1 mutant cultures incurred less DNA damage than IDH wildtype cultures and sustained better overall growth following X-ray radiation. Overexpression of mutant IDH1 in a wildtype line did not reproduce the range of metabolic differences observed in lines expressing endogenous mutations, but resulted in depletion of glutamine and TCA cycle intermediates, an increase in DNA damage following radiation, and a rise in intracellular ROS. CONCLUSIONS: These results demonstrate that IDH1 mutant and IDH wildtype cells are easily distinguishable metabolically by analyzing expression profiles and glucose consumption. Our results also highlight important differences in nucleotide synthesis utilization and DNA repair capacity that could be exploited for therapy. Altogether, this study demonstrates that IDH1 mutant gliomas are a distinct subclass of glioma with a less malignant, but also therapy-resistant, metabolic profile that will likely require distinct modes of therapy.

4.
Cell Rep ; 12(2): 258-71, 2015 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-26146073

RESUMO

As the list of putative driver mutations in glioma grows, we are just beginning to elucidate the effects of dysregulated developmental signaling pathways on the transformation of neural cells. We have employed a postnatal, mosaic, autochthonous glioma model that captures the first hours and days of gliomagenesis in more resolution than conventional genetically engineered mouse models of cancer. We provide evidence that disruption of the Nf1-Ras pathway in the ventricular zone at multiple signaling nodes uniformly results in rapid neural stem cell depletion, progenitor hyperproliferation, and gliogenic lineage restriction. Abolishing Ets subfamily activity, which is upregulated downstream of Ras, rescues these phenotypes and blocks glioma initiation. Thus, the Nf1-Ras-Ets axis might be one of the select molecular pathways that are perturbed for initiation and maintenance in glioma.


Assuntos
Neoplasias Encefálicas/patologia , Glioma/patologia , Proteínas Proto-Oncogênicas c-ets/metabolismo , Proteínas ras/metabolismo , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Neoplasias Encefálicas/metabolismo , Proteínas de Ligação a DNA/metabolismo , Genes Reporter , Glioma/metabolismo , Imuno-Histoquímica , Camundongos , Microscopia Confocal , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Neurofibromina 1/antagonistas & inibidores , Neurofibromina 1/genética , Neurofibromina 1/metabolismo , Proteínas Proto-Oncogênicas c-ets/genética , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo , Regulação para Cima
5.
Proc Natl Acad Sci U S A ; 111(33): E3458-66, 2014 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-25082897

RESUMO

Cancer cell secretion of TGF-ß is a potent mechanism for immune evasion. However, little is known about how central nervous system tumors guard against immune eradication. We sought to determine the impact of T-cell TGF-ß signaling blockade on progression of medulloblastoma (MB), the most common pediatric brain tumor. Genetic abrogation of T-cell TGF-ß signaling mitigated tumor progression in the smoothened A1 (SmoA1) transgenic MB mouse. T regulatory cells were nearly abolished and antitumor immunity was mediated by CD8 cytotoxic T lymphocytes. To define the CD8 T-cell subpopulation responsible, primed CD8 T cells were adoptively transferred into tumor-bearing immunocompromised SmoA1 recipients. This led to generation of CD8(+)/killer cell lectin-like receptor G1 high (KLRG1(hi))/IL-7R(lo) short-lived effector cells that expressed granzyme B at the tumor. These results identify a cellular immune mechanism whereby TGF-ß signaling blockade licenses the T-cell repertoire to kill pediatric brain tumor cells.


Assuntos
Linfócitos T CD8-Positivos/metabolismo , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo , Animais , Comportamento Animal , Linfócitos T CD8-Positivos/citologia , Diferenciação Celular , Citometria de Fluxo , Camundongos , Camundongos Endogâmicos C57BL
6.
Mol Neurobiol ; 45(3): 564-70, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22644387

RESUMO

Although the discovery of cilia is one of the earliest in cell biology, the past two decades have witnessed an explosion of new insight into these enigmatic organelles. While long believed to be vestigial, cilia have recently moved into the spotlight as key players in multiple cellular processes, including brain development and homeostasis. This review focuses on the rapidly expanding basic biology of neural cilia, with special emphasis on the newly emerging B9 family of proteins. In particular, recent findings have identified a critical role for the B9 complex in a network of protein interactions that take place at the ciliary transition zone (TZ). We describe the essential role of these protein complexes in signaling cascades that require primary (nonmotile) cilia, including the sonic hedgehog pathway. Loss or dysfunction of ciliary trafficking and TZ function are linked to a number of neurologic diseases, which we propose to classify as neural ciliopathies. When taken together, the studies reviewed herein point to critical roles played by neural cilia, both in normal physiology and in disease.


Assuntos
Cílios/metabolismo , Proteínas de Membrana/metabolismo , Neurônios/metabolismo , Organogênese , Animais , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Cílios/patologia , Humanos , Sistema Nervoso/crescimento & desenvolvimento , Sistema Nervoso/metabolismo , Sistema Nervoso/patologia , Neurônios/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA