Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Pharmacol Res ; 127: 33-40, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28873339

RESUMO

The adult myocardium, including human, harbours a population of resident multi-potent cardiac stem cells (CSCs), which when stimulated under the right conditions can give rise to new cardiomyocytes and vasculature. Elucidation of the cellular and molecular mechanisms that govern CSC biology and their role in myocardial regeneration will allow the design and development of optimal therapeutic interventions. It is now evident that different growth factors and cytokines govern CSC survival, proliferation, migration and differentiation, as well as playing a role in activating cardiac repair mechanisms such as improving angiogenesis, cardiomyocyte survival and limiting fibrosis. This review article will summarize the evidence for a role of VEGF, NRG-1, IGF-1, HGF, EGF, FGF and TGF-ß1 in modulating the repair and regeneration of cardiac tissue. It will also discuss the use of exosomes and exercise training as interventions to stimulate the endogenous repair and regenerative mechanisms in the damaged heart.


Assuntos
Citocinas/fisiologia , Coração/fisiologia , Peptídeos e Proteínas de Sinalização Intercelular/fisiologia , Regeneração/fisiologia , Células-Tronco/fisiologia , Animais , Exercício Físico/fisiologia , Exossomos/fisiologia , Humanos
2.
Cell Death Differ ; 24(12): 2101-2116, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28800128

RESUMO

Multipotent adult resident cardiac stem cells (CSCs) were first identified by the expression of c-kit, the stem cell factor receptor. However, in the adult myocardium c-kit alone cannot distinguish CSCs from other c-kit-expressing (c-kitpos) cells. The adult heart indeed contains a heterogeneous mixture of c-kitpos cells, mainly composed of mast and endothelial/progenitor cells. This heterogeneity of cardiac c-kitpos cells has generated confusion and controversy about the existence and role of CSCs in the adult heart. Here, to unravel CSC identity within the heterogeneous c-kit-expressing cardiac cell population, c-kitpos cardiac cells were separated through CD45-positive or -negative sorting followed by c-kitpos sorting. The blood/endothelial lineage-committed (Lineagepos) CD45posc-kitpos cardiac cells were compared to CD45neg(Lineageneg/Linneg) c-kitpos cardiac cells for stemness and myogenic properties in vitro and in vivo. The majority (~90%) of the resident c-kitpos cardiac cells are blood/endothelial lineage-committed CD45posCD31posc-kitpos cells. In contrast, the LinnegCD45negc-kitpos cardiac cell cohort, which represents ⩽10% of the total c-kitpos cells, contain all the cardiac cells with the properties of adult multipotent CSCs. These characteristics are absent from the c-kitneg and the blood/endothelial lineage-committed c-kitpos cardiac cells. Single Linnegc-kitpos cell-derived clones, which represent only 1-2% of total c-kitpos myocardial cells, when stimulated with TGF-ß/Wnt molecules, acquire full transcriptome and protein expression, sarcomere organisation, spontaneous contraction and electrophysiological properties of differentiated cardiomyocytes (CMs). Genetically tagged cloned progeny of one Linnegc-kitpos cell when injected into the infarcted myocardium, results in significant regeneration of new CMs, arterioles and capillaries, derived from the injected cells. The CSC's myogenic regenerative capacity is dependent on commitment to the CM lineage through activation of the SMAD2 pathway. Such regeneration was not apparent when blood/endothelial lineage-committed c-kitpos cardiac cells were injected. Thus, among the cardiac c-kitpos cell cohort only a very small fraction has the phenotype and the differentiation/regenerative potential characteristics of true multipotent CSCs.


Assuntos
Células-Tronco Adultas/enzimologia , Células-Tronco Multipotentes/enzimologia , Miocárdio/enzimologia , Proteínas Proto-Oncogênicas c-kit/biossíntese , Células-Tronco Adultas/citologia , Animais , Diferenciação Celular/fisiologia , Células Cultivadas , Masculino , Camundongos , Células-Tronco Multipotentes/citologia , Miocárdio/citologia , Ratos , Ratos Wistar
3.
Stem Cell Res Ther ; 8(1): 158, 2017 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-28676130

RESUMO

BACKGROUND: The development of cellular therapies to treat muscle wastage with disease or age is paramount. Resident muscle satellite cells are not currently regarded as a viable cell source due to their limited migration and growth capability ex vivo. This study investigated the potential of muscle-derived PW1+/Pax7- interstitial progenitor cells (PICs) as a source of tissue-specific stem/progenitor cells with stem cell properties and multipotency. METHODS: Sca-1+/PW1+ PICs were identified on tissue sections from hind limb muscle of 21-day-old mice, isolated by magnetic-activated cell sorting (MACS) technology and their phenotype and characteristics assessed over time in culture. Green fluorescent protein (GFP)-labelled PICs were used to determine multipotency in vivo in a tumour formation assay. RESULTS: Isolated PICs expressed markers of pluripotency (Oct3/4, Sox2, and Nanog), were clonogenic, and self-renewing with >60 population doublings, and a population doubling time of 15.8 ± 2.9 h. PICs demonstrated an ability to generate both striated and smooth muscle, whilst also displaying the potential to differentiate into cell types of the three germ layers both in vitro and in vivo. Moreover, PICs did not form tumours in vivo. CONCLUSION: These findings open new avenues for a variety of solid tissue engineering and regeneration approaches, utilising a single multipotent stem cell type isolated from an easily accessible source such as skeletal muscle.


Assuntos
Antígenos de Diferenciação/biossíntese , Proliferação de Células , Regulação da Expressão Gênica , Células-Tronco Multipotentes/metabolismo , Células Satélites de Músculo Esquelético/metabolismo , Animais , Camundongos , Células-Tronco Multipotentes/citologia , Células Satélites de Músculo Esquelético/citologia
4.
JACC Basic Transl Sci ; 2(6): 717-736, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30062184

RESUMO

Skeletal muscle-derived PW1pos/Pax7neg interstitial cells (PICs) express and secrete a multitude of proregenerative growth factors and cytokines. Utilizing a porcine preclinical skeletal muscle injury model, delivery of allogeneic porcine PICs (pPICs) significantly improved and accelerated myofiber regeneration and neocapillarization, compared with saline vehicle control-treated muscles. Allogeneic pPICs did not contribute to new myofibers or capillaries and were eliminated by the host immune system. In conclusion, allogeneic pPIC transplantation stimulated the endogenous stem cell pool to bring about enhanced autologous skeletal muscle repair and regeneration. This allogeneic cell approach is considered a cost-effective, easy to apply, and readily available regenerative therapeutic strategy.

5.
Nat Protoc ; 9(7): 1662-81, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24945383

RESUMO

This protocol describes the isolation of endogenous c-Kit (also known as CD117)-positive (c-Kit(+)), CD45-negative (CD45(-)) cardiac stem cells (eCSCs) from whole adult mouse and rat hearts. The heart is enzymatically digested via retrograde perfusion of the coronary circulation, resulting in rapid and extensive breakdown of the whole heart. Next, the tissue is mechanically dissociated further and cell fractions are separated by centrifugation. The c-Kit(+)CD45(-) eCSC population is isolated by magnetic-activated cell sorting technology and purity and cell numbers are assessed by flow cytometry. This process takes ∼4 h for mouse eCSCs or 4.5 h for rat eCSCs. We also describe how to characterize c-Kit(+)CD45(-) eCSCs. The c-Kit(+)CD45(-) eCSCs exhibit the defining characteristics of stem cells: they are self-renewing, clonogenic and multipotent. This protocol also describes how to differentiate eCSCs into three main cardiac lineages: functional, beating cardiomyocytes, smooth muscle, and endothelial cells. These processes take 17-20 d.


Assuntos
Miocárdio/citologia , Proteínas Proto-Oncogênicas c-kit/metabolismo , Células-Tronco/citologia , Animais , Técnicas de Cultura de Células , Diferenciação Celular , Linhagem da Célula , Células Cultivadas , Camundongos , Miocárdio/metabolismo , Ratos , Células-Tronco/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA