Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
2.
Development ; 138(23): 5121-34, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22069186

RESUMO

In mouse, Hedgehog (Hh) signalling is required for most ventral spinal neurons to form. Here, we analyse the spinal cord phenotype of zebrafish maternal-zygotic smoothened (MZsmo) mutants that completely lack Hh signalling. We find that most V3 domain cells and motoneurons are lost, whereas medial floorplate still develops normally and V2, V1 and V0v cells form in normal numbers. This phenotype resembles that of mice that lack both Hh signalling and Gli repressor activity. Ventral spinal cord progenitor domain transcription factors are not expressed at 24 hpf in zebrafish MZsmo mutants. However, pMN, p2 and p1 domain markers are expressed at early somitogenesis stages in these mutants. This suggests that Gli repressor activity does not extend into zebrafish ventral spinal cord at these stages, even in the absence of Hh signalling. Consistent with this, ectopic expression of Gli3R represses ventral progenitor domain expression at these early stages and knocking down Gli repressor activity rescues later expression. We investigated whether retinoic acid (RA) signalling specifies ventral spinal neurons in the absence of Hh signalling. The results suggest that RA is required for the correct number of many different spinal neurons to form. This is probably mediated, in part, by an effect on cell proliferation. However, V0v, V1 and V2 cells are still present, even in the absence of both Hh and RA signalling. We demonstrate that Gli1 has a Hh-independent role in specifying most of the remaining motoneurons and V3 domain cells in embryos that lack Hh signalling, but removal of Gli1 activity does not affect more dorsal neurons.


Assuntos
Diferenciação Celular/fisiologia , Proteínas Hedgehog/metabolismo , Neurônios/fisiologia , Transdução de Sinais/fisiologia , Medula Espinal/citologia , Tretinoína/metabolismo , Peixe-Zebra/embriologia , Animais , Imuno-Histoquímica , Hibridização In Situ , Morfolinos/genética , Proteínas Oncogênicas/metabolismo , Receptores Acoplados a Proteínas G/genética , Transdução de Sinais/efeitos dos fármacos , Receptor Smoothened , Medula Espinal/embriologia , Transativadores/metabolismo , Alcaloides de Veratrum/farmacologia , Proteínas de Peixe-Zebra/genética , Proteína GLI1 em Dedos de Zinco , p-Aminoazobenzeno/análogos & derivados , p-Aminoazobenzeno/farmacologia
3.
Dev Biol ; 322(2): 263-75, 2008 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-18680739

RESUMO

The vertebrate spinal cord contains distinct classes of cells that form at precise dorsal-ventral locations and express specific combinations of transcription factors. In amniotes, V2 cells develop in the ventral spinal cord, just dorsal to motoneurons. All V2 cells develop from the same progenitor domain and hence are initially molecularly identical. However, as they start to become post-mitotic and differentiate they subdivide into two intermingled molecularly-distinct subpopulations of cells, V2a and V2b cells. Here we show that the molecular identities of V2a and V2b cells are conserved between zebrafish and amniotes. In zebrafish, these two cell types both develop into interneurons with very similar morphologies, but while V2a cells become excitatory Circumferential Descending (CiD) interneurons, V2b cells become inhibitory Ventral Lateral Descending (VeLD) interneurons. In addition, we demonstrate that Notch signalling is required for V2 cells to develop into V2b cells. In the absence of Notch signalling, all V2b cells develop as V2a cells.


Assuntos
Interneurônios/metabolismo , Receptores Notch/metabolismo , Medula Espinal/embriologia , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/embriologia , Animais , Antígenos de Diferenciação/metabolismo , Padronização Corporal , Diferenciação Celular/fisiologia , Embrião não Mamífero/citologia , Embrião não Mamífero/metabolismo , Interneurônios/citologia , Neurônios Motores/metabolismo , Transdução de Sinais , Medula Espinal/citologia , Medula Espinal/metabolismo , Peixe-Zebra/metabolismo
4.
Genes Dev ; 18(13): 1565-76, 2004 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-15198976

RESUMO

Signaling by lipid-modified secreted glycoproteins of the Hedgehog family play fundamental roles during pattern formation in animal development and in humans; dysfunction of Hedgehog pathway components is frequently associated with a variety of congenital abnormalities and cancer. Transcriptional regulation of Hedgehog target genes is mediated by members of the Gli zinc-finger transcription factors. The relative nuclear concentrations of Gli activator (Gli(act)) and repressor (Gli(rep)) forms, together with their nucleocytoplasmic trafficking, appear to be critical determinants for target gene expression. Whereas such stringent controls of Gli activity are critical in ensuring appropriate levels of pathway activation, the mechanisms by which these processes are regulated remain inadequately understood. Here, using genetic analysis, we show that the zebrafish iguana gene product acts downstream of the Smoothened protein to modulate Gli activity in the somites of the developing embryo. Positional cloning reveals that iguana encodes the zebrafish ortholog of Dzip1, a novel zinc-finger/coiled-coil domain protein that we show can shuttle between the cytoplasm and nucleus in a manner correlated with Hedgehog pathway activity.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas de Drosophila , Transdução de Sinais , Transativadores/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/embriologia , Dedos de Zinco , Animais , Proteínas de Transporte/genética , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Embrião não Mamífero , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Proteínas Hedgehog , Dados de Sequência Molecular , Mutação , Proteínas Oncogênicas/genética , Proteínas Oncogênicas/metabolismo , Estrutura Terciária de Proteína , Receptores Acoplados a Proteínas G/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Receptor Smoothened , Transativadores/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas de Peixe-Zebra/genética , Proteína GLI1 em Dedos de Zinco , Proteína Gli2 com Dedos de Zinco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA