Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Pharmacol Res ; 139: 215-227, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30472464

RESUMO

Autosomal dominant nocturnal frontal lobe epilepsy (ADNFLE) is a genetic form of epilepsy that is caused by mutations in several genes, including genes encoding for the α4 and ß2 subunits of the nicotinic acetylcholine (nACh) receptor. Pentameric α4ß2 nACh receptors are the most abundant nicotinic receptor in the mammalian brain and form two stoichiometries, the (α4)3(ß2)2 and (α4)2(ß2)3 receptors that differ in their physiological and pharmacological properties. The purpose of this study was to investigate how ADNFLE mutations ß2V287M, ß2V287L or α4T293I manifest themselves in different receptor stoichiometries. We expressed wild-type and mutant receptors in Xenopus oocytes and measured the response to ACh and other agonists at both receptor stoichiometries. For all three mutations, the efficacy of ACh at (α4)2(ß2)3 receptors was increased. At (α4)3(ß2)2 receptors, the efficacy of activation was increased both when two molecules of agonist, either ACh or the site-selective agonist sazetidine-A, were bound at the α4-ß2 interfaces, and when a third ACh molecule was bound at the α4-α4 site. Regardless of stoichiometry, the mutations increased the current elicited by low concentrations of ACh. Further, the smoking cessation agents, nicotine, varenicline and cytisine increased activation of mutant (α4)3(ß2)2 receptors, while only nicotine increased activation of mutant (α4)2(ß2)3 receptors. Chronic exposure of all agonists reduced ACh-activation levels at low and high ACh concentrations. From this, we concluded that mutations that cause ADNFLE manifest themselves in a change in efficacy regardless of the stoichiometry of the receptor.


Assuntos
Epilepsia do Lobo Frontal/genética , Receptores Nicotínicos/fisiologia , Acetilcolina/farmacologia , Alcaloides/farmacologia , Animais , Azocinas/farmacologia , Epilepsia do Lobo Frontal/fisiopatologia , Feminino , Mutação , Nicotina/farmacologia , Agonistas Nicotínicos/farmacologia , Oócitos/fisiologia , Quinolizinas/farmacologia , Vareniclina/farmacologia , Xenopus laevis
2.
J Biol Chem ; 288(37): 26521-32, 2013 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-23893416

RESUMO

The α4ß2 nicotinic acetylcholine receptors (nAChRs) are widely expressed in the brain and are implicated in a variety of physiological processes. There are two stoichiometries of the α4ß2 nAChR, (α4)2(ß2)3 and (α4)3(ß2)2, with different sensitivities to acetylcholine (ACh), but their pharmacological profiles are not fully understood. Methyllycaconitine (MLA) is known to be an antagonist of nAChRs. Using the two-electrode voltage clamp technique and α4ß2 nAChRs in the Xenopus oocyte expression system, we demonstrate that inhibition by MLA occurs via two different mechanisms; that is, a direct competitive antagonism and an apparently insurmountable mechanism that only occurs after preincubation with MLA. We hypothesized an additional MLA binding site in the α4-α4 interface that is unique to this stoichiometry. To prove this, we covalently trapped a cysteine-reactive MLA analog at an α4ß2 receptor containing an α4(D204C) mutation predicted by homology modeling to be within reach of the reactive probe. We demonstrate that covalent trapping results in irreversible reduction of ACh-elicited currents in the (α4)3(ß2)2 stoichiometry, indicating that MLA binds to the α4-α4 interface of the (α4)3(ß2)2 and providing direct evidence of ligand binding to the α4-α4 interface. Consistent with other studies, we propose that the α4-α4 interface is a structural target for potential therapeutics that modulate (α4)3(ß2)2 nAChRs.


Assuntos
Aconitina/análogos & derivados , Antagonistas Nicotínicos/química , Receptores Nicotínicos/química , Aconitina/química , Animais , Sítios de Ligação , Cisteína/química , Escherichia coli/metabolismo , Feminino , Ligantes , Maleimidas/química , Mutagênese Sítio-Dirigida , Oócitos/citologia , Ligação Proteica , Conformação Proteica , Ratos , Receptores Nicotínicos/fisiologia , Proteínas Recombinantes/química , Xenopus laevis
3.
J Neurochem ; 115(5): 1245-55, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20874766

RESUMO

Ligand-gated ion channels efficiently couple neurotransmitter binding to the opening of an intrinsic ion channel to generate the post-synaptic potentials that are characteristic of fast synaptic transmission. In the Cys-loop family of ligand-gated ion channels, the ligand-binding site is approximately 60 Å above the channel gate. Structural modelling of related proteins and mutagenesis studies led to the hypothesis that loops 2 and 7 of the extracellular domain may couple ligand binding to receptor activation. Mutating loop 2 residues of the glycine receptor to cysteine reveals an alternating pattern of effect upon receptor function. Mutations A52C, T54C and M56C produced a threefold right-shift in EC(50) . In contrast, a 30-fold right-shift was seen for mutations E53C, T55C and D57C. Loop 2 conformational changes associated with ligand binding were assessed by measuring the rate of covalent modification of substituted cysteines by charged methane thiosulfonate reagents. We show for the first time state-dependent differences in the rate of reaction. A52C and T54C are more accessible in the resting state and M56C is more accessible in the activated state. These results demonstrate that loop 2 does undergo a conformational change as part of the mechanism that couples ligand binding to channel opening.


Assuntos
Receptores de Glicina/química , Receptores de Glicina/metabolismo , Transdução de Sinais/fisiologia , Sítios de Ligação/genética , Linhagem Celular Transformada , Cisteína/genética , Relação Dose-Resposta a Droga , Glicina/farmacologia , Humanos , Ativação do Canal Iônico/genética , Ligantes , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/genética , Modelos Biológicos , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese/genética , Mutagênese/fisiologia , Mutagênese Sítio-Dirigida/métodos , Técnicas de Patch-Clamp/métodos , Conformação Proteica , Estrutura Terciária de Proteína/genética , Estrutura Terciária de Proteína/fisiologia , Receptores de Glicina/genética , Transdução de Sinais/genética , Reagentes de Sulfidrila/farmacologia , Transfecção/métodos
4.
Eur Biophys J ; 39(1): 37-49, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19404635

RESUMO

The Cys-loop receptor superfamily of ligand-gated ion channels has a prominent role in neuronal signalling. These receptors are pentamers, each subunit containing ten beta-strands in the extracellular domain and four alpha-helical transmembrane domains (M1-M4). The M2 domain of each subunit lines the intrinsic ion channel pore and residues within the extracellular domain form ligand binding sites. Ligand binding initiates a conformational change that opens the ion-selective pore. The coupling between ligand binding in the extracellular domain and opening of the intrinsic ion channel pore located in the membrane is not fully understood. Several loop structures, such as loop 2, the Cys-loop, the pre-M1 region and the M2-M3 loop have been implicated in receptor activation. The current "conformational change wave" hypothesis suggests that binding of a ligand initiates a rotation of the beta-sheets around an axis that passes through the Cys-loop. Due to this rotation, the Cys-loop and loop 2 are displaced. Movement of the M2-M3 loop then twists the M2 domain leading to a separation of the helices and opening of the pore. The publication of a crystal structure of an acetylcholine binding protein and the refined structure of the Torpedo marmorata acetylcholine receptor have improved the understanding of the mechanisms and structures involved in coupling ligand binding to channel gating. In this review, the most recent findings on some of these loop structures will be reported and discussed in view of their role in the gating mechanism.


Assuntos
Cisteína , Ativação do Canal Iônico , Canais Iônicos/química , Canais Iônicos/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação , Humanos , Ligantes , Dados de Sequência Molecular
5.
Neurochem Res ; 34(10): 1805-15, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19381804

RESUMO

The Cys-loop receptor family of ligand-gated ion channels (LGICs) play a key role in synaptic transmission in the central nervous system of animals. Recent advances have led to the elucidation of two crystal structures of related prokaryotic LGICs and the electron micrograph derived structure of the acetylcholine receptor from Torpedo marmorata. Here, we review the structural and biochemical data that form our understanding of the structure of the channel pore. We introduce original data from the glycine receptor using the substituted-cysteine accessibility technique and show that while the helical structure of the segment that surrounds the channel pore is generally agreed, the location of the channel gate, the pore diameter and the structure that forms the entry to the channel pore are likely to differ between receptors. The fundamental structural differences between anion and cation selective receptors and how these differences are related to the pore structure are also considered.


Assuntos
Cisteína/química , Ativação do Canal Iônico/fisiologia , Canais Iônicos/química , Canais Iônicos/metabolismo , Sequência de Aminoácidos , Animais , Linhagem Celular , Cisteína/genética , Cisteína/metabolismo , Humanos , Ativação do Canal Iônico/genética , Canais Iônicos/genética , Ligantes , Dados de Sequência Molecular , Receptores Nicotínicos/química , Receptores Nicotínicos/genética , Receptores Nicotínicos/metabolismo , Torpedo/genética , Torpedo/metabolismo
6.
Eur Biophys J ; 34(5): 442-53, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15928936

RESUMO

Dequalinium has recently been reported to block CNGA1 and CNGA2 channels expressed in Xenopus laevis. Using the inside-out configuration of the patch-clamp technique, we examined the effects of dequalinium on rat olfactory CNGA2 channels expressed in human embryonic kidney (HEK293) cells and studied aspects of its molecular mechanism of action. We found that cytoplasmic dequalinium blocked wild-type (WT) CNGA2 channels in a voltage-dependent manner with an IC(50) of approximately 1.3 muM at a V(m) of + 60 mV, and an effective fractional charge, zdelta, of +0.8 (z=2, delta=+0.4), suggesting that cytoplasmic dequalinium interacts with a binding site that is about two fifths of the way along the membrane electric field (from the intracellular side). Neutralizing the negatively charged pore lining glutamate acid residue (E342Q) still allows effective channel block by cytoplasmic dequalinium with an IC(50) of approximately 2.2 muM at a V(m) of +60 mV but now having a zdelta of +0.1 (delta=+0.05), indicating a profoundly decreased level of voltage-dependence. In addition, by comparing the extent of block under different levels of channel activation, we show that the block by cytoplasmic dequalinium displayed clear state-dependence in WT channels by interacting predominantly with the closed channel, whereas the block in E342Q channels was state-independent. Application of dequalinium to the external membrane surface also blocked currents through WT channels and the E342Q mutation significantly increased the IC(50) for external block approximately fivefold. These results confirm dequalinium as a potent, voltage-dependent and state-dependent blocker of cyclic-nucleotide-gated channels, and show that neutralization of the E342 residue profoundly affects the block by both cytoplasmic and external application of dequalinium.


Assuntos
Ácido Glutâmico/química , Canais Iônicos/genética , Mutação , Animais , Anti-Infecciosos Locais/farmacologia , Sítios de Ligação , Biofísica/métodos , Cátions , Linhagem Celular , Membrana Celular/metabolismo , AMP Cíclico/metabolismo , Canais de Cátion Regulados por Nucleotídeos Cíclicos , Citoplasma/metabolismo , DNA Complementar/metabolismo , Relação Dose-Resposta a Droga , Eletrofisiologia , Humanos , Concentração Inibidora 50 , Canais Iônicos/química , Canais Iônicos/metabolismo , Cinética , Modelos Químicos , Técnicas de Patch-Clamp , Ratos , Xenopus
7.
J Biol Chem ; 278(50): 50151-7, 2003 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-14525990

RESUMO

The glycine receptor is a member of the ligand-gated ion channel receptor superfamily that mediates fast synaptic transmission in the brainstem and spinal cord. Following ligand binding, the receptor undergoes a conformational change that is conveyed to the transmembrane regions of the receptor resulting in the opening of the channel pore. Using the acetylcholine-binding protein structure as a template, we modeled the extracellular domain of the glycine receptor alpha1-subunit and identified the location of charged residues within loops 2 and 7 (the conserved Cys-loop). These loops have been postulated to interact with the M2-M3 linker region between the transmembrane domains 2 and 3 as part of the receptor activation mechanism. Charged residues were substituted with cysteine, resulting in a shift in the concentration-response curves to the right in each case. Covalent modification with 2-(trimethylammonium) ethyl methanethiosulfonate was demonstrated only for K143C, which was more accessible in the open state than the closed state, and resulted in a shift in the EC50 toward wild-type values. Charge reversal mutations (E53K, D57K, and D148K) also impaired channel activation, as inferred from increases in EC50 values and the conversion of taurine from an agonist to an antagonist in E53K and D57K. Thus, each of the residues Glu-53, Asp-57, Lys-143, and Asp-148 are implicated in channel gating. However, the double reverse charge mutations E53K:K276E, D57K:K276E, and D148K:K276E did not restore glycine receptor function. These results indicate that loops 2 and 7 in the extracellular domain play an important role in the mechanism of activation of the glycine receptor although not by a direct electrostatic mechanism.


Assuntos
Receptores de Glicina/química , Acetilcolina/química , Sequência de Aminoácidos , Proteínas de Transporte/química , Cisteína/química , DNA Complementar/metabolismo , Relação Dose-Resposta a Droga , Eletrofisiologia , Glicina/química , Humanos , Indicadores e Reagentes/farmacologia , Íons , Ligantes , Lisina/química , Mesilatos/química , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Ligação Proteica , Conformação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos , Taurina/química , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA