Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38562901

RESUMO

This study investigated the relationship between gut microbiota and neuropsychiatric disorders (NPDs), specifically anxiety disorder (ANXD) and/or major depressive disorder (MDD), as defined by DSM-IV or V criteria. The study also examined the influence of medication use, particularly antidepressants and/or anxiolytics, classified through the Anatomical Therapeutic Chemical (ATC) Classification System, on the gut microbiota. Both 16S rRNA gene amplicon sequencing and shallow shotgun sequencing were performed on DNA extracted from 666 fecal samples from the Tulsa-1000 and NeuroMAP CoBRE cohorts. The results highlight the significant influence of medication use; antidepressant use is associated with significant differences in gut microbiota beta diversity and has a larger effect size than NPD diagnosis. Next, specific microbes were associated with ANXD and MDD, highlighting their potential for non-pharmacological intervention. Finally, the study demonstrated the capability of Random Forest classifiers to predict diagnoses of NPD and medication use from microbial profiles, suggesting a promising direction for the use of gut microbiota as biomarkers for NPD. The findings suggest that future research on the gut microbiota's role in NPD and its interactions with pharmacological treatments are needed.

2.
J Nutr Biochem ; 97: 108808, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34186211

RESUMO

Studies in mice using germfree animals as controls for microbial colonization have shown that the gut microbiome mediates diet-induced obesity. Such studies use diets rich in saturated fat, however, Western diets in the United States America are enriched in soybean oil, composed of unsaturated fatty acids, either linoleic or oleic acid. Here, we addressed whether the microbiome is a variable in fat metabolism in mice on a soybean oil diet. We used conventionally-raised, low-germ, and germfree mice fed for 10 weeks diets either high or low in high-linoleic-acid soybean oil as the sole source of fat. Conventional and germfree mice gained relative fat weight and all mice consumed more calories on the high fat vs. low fat soybean oil diet. Plasma fatty acid levels were generally dependent on diet, with microbial colonization status affecting iso-C18:0, C20:3n-6, C14:0, and C15:0 levels. Colonization status, but not diet, impacted levels of liver sphingolipids including ceramides, sphingomyelins, and sphinganine. Our results confirm that absorbed fatty acids are mainly a reflection of the diet and that microbial colonization influences liver sphingolipid pools regardless of diet.


Assuntos
Dieta Ocidental , Ácidos Graxos/sangue , Microbioma Gastrointestinal/fisiologia , Fígado/metabolismo , Óleo de Soja , Esfingolipídeos/metabolismo , Tecido Adiposo , Animais , Peso Corporal , Fezes/microbiologia , Vida Livre de Germes , Masculino , Camundongos , Camundongos Endogâmicos C57BL
3.
Artigo em Inglês | MEDLINE | ID: mdl-33881979

RESUMO

The genera Catabacter (family 'Catabacteraceae') and Christensenella (family Christensenellaceae) are close relatives within the phylum Firmicutes. Members of these genera are strictly anaerobic, non-spore-forming and short straight rods with diverse phenotypes. Phylogenetic analysis of 16S rRNA genes suggest that Catabacter splits Christensenella into a polyphyletic clade. In an effort to ensure that family/genus names represent monophyletic clades, we performed a whole-genome based analysis of the genomes available for the cultured representatives of these genera: four species of Christensenella and two strains of Catabacter hongkongensis. A concatenated alignment of 135 shared protein sequences of single-copy core genes present in the included strains indicates that C. hongkongensis is indeed nested within the Christensenella clade. Based on their evolutionary relationship, we propose the transfer of Catabacter hongkongensis to the genus Christensenella as Christensenella hongkongensis comb. nov.


Assuntos
Clostridiales/classificação , Genoma Bacteriano , Filogenia , Técnicas de Tipagem Bacteriana , Bacilos Gram-Positivos/classificação
4.
Nat Commun ; 11(1): 2471, 2020 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-32424203

RESUMO

Gut microbes are linked to host metabolism, but specific mechanisms remain to be uncovered. Ceramides, a type of sphingolipid (SL), have been implicated in the development of a range of metabolic disorders from insulin resistance (IR) to hepatic steatosis. SLs are obtained from the diet and generated by de novo synthesis in mammalian tissues. Another potential, but unexplored, source of mammalian SLs is production by Bacteroidetes, the dominant phylum of the gut microbiome. Genomes of Bacteroides spp. and their relatives encode serine palmitoyltransfease (SPT), allowing them to produce SLs. Here, we explore the contribution of SL-production by gut Bacteroides to host SL homeostasis. In human cell culture, bacterial SLs are processed by host SL-metabolic pathways. In mouse models, Bacteroides-derived lipids transfer to host epithelial tissue and the hepatic portal vein. Administration of B. thetaiotaomicron to mice, but not an SPT-deficient strain, reduces de novo SL production and increases liver ceramides. These results indicate that gut-derived bacterial SLs affect host lipid metabolism.


Assuntos
Bacteroides/fisiologia , Ceramidas/metabolismo , Microbioma Gastrointestinal , Redes e Vias Metabólicas , Esfingolipídeos/metabolismo , Animais , Células CACO-2 , Células Epiteliais/metabolismo , Células Epiteliais/microbiologia , Vida Livre de Germes , Humanos , Resistência à Insulina , Mucosa Intestinal/microbiologia , Fígado/metabolismo , Redes e Vias Metabólicas/genética , Camundongos , Mutação/genética , Serina C-Palmitoiltransferase/deficiência , Serina C-Palmitoiltransferase/genética , Serina C-Palmitoiltransferase/metabolismo
5.
Cell Metab ; 31(1): 8-10, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31951569

RESUMO

Iron is essential for both the host and its resident microbes, resulting in competition under iron-deficient conditions. However, the molecular details underlying this competition are not fully understood. In this issue, Das et al. (2019) describe how a common gut commensal disrupts the host iron regulatory pathway to prevent uptake when iron is scarce.


Assuntos
Anemia Ferropriva , Transporte Biológico , Homeostase , Humanos , Ferro , Simbiose
6.
Elife ; 72018 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-29580380

RESUMO

Over the past century, soybean oil (SBO) consumption in the United States increased dramatically. The main SBO fatty acid, linoleic acid (18:2), inhibits in vitro the growth of lactobacilli, beneficial members of the small intestinal microbiota. Human-associated lactobacilli have declined in prevalence in Western microbiomes, but how dietary changes may have impacted their ecology is unclear. Here, we compared the in vitro and in vivo effects of 18:2 on Lactobacillus reuteri and L. johnsonii. Directed evolution in vitro in both species led to strong 18:2 resistance with mutations in genes for lipid biosynthesis, acid stress, and the cell membrane or wall. Small-intestinal Lactobacillus populations in mice were unaffected by chronic and acute 18:2 exposure, yet harbored both 18:2- sensitive and resistant strains. This work shows that extant small intestinal lactobacilli are protected from toxic dietary components via the gut environment as well as their own capacity to evolve resistance.


Assuntos
Microbioma Gastrointestinal/efeitos dos fármacos , Intestino Delgado/microbiologia , Lactobacillus johnsonii/efeitos dos fármacos , Limosilactobacillus reuteri/efeitos dos fármacos , Ácido Linoleico/toxicidade , Óleo de Soja/toxicidade , Animais , Farmacorresistência Bacteriana , Lactobacillus johnsonii/crescimento & desenvolvimento , Limosilactobacillus reuteri/crescimento & desenvolvimento , Camundongos , Mutação , Seleção Genética
7.
Dis Model Mech ; 10(3): 235-243, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28093508

RESUMO

Bariatric surgery, such as vertical sleeve gastrectomy (VSG), causes remarkable improvements in cardiometabolic health, including hypertension remission. However, the mechanisms responsible remain undefined and poorly studied. Therefore, we developed and validated the first murine model of VSG that recapitulates the blood pressure-lowering effect of VSG using gold-standard radiotelemetry technology. We used this model to investigate several potential mechanisms, including body mass, brain endoplasmic reticulum (ER) stress signaling and brain inflammatory signaling, which are all critical contributors to the pathogenesis of obesity-associated hypertension. Mice fed on a high-fat diet underwent sham or VSG surgery and radiotelemeter implantation. Sham mice were fed ad libitum or were food restricted to match their body mass to VSG-operated mice to determine the role of body mass in the ability of VSG to lower blood pressure. Blood pressure was then measured in freely moving unstressed mice by radiotelemetry. VSG decreased energy intake, body mass and fat mass. Mean arterial blood pressure (MAP) was reduced in VSG-operated mice compared with both sham-operated groups. VSG-induced reductions in MAP were accompanied by a body mass-independent decrease in hypothalamic ER stress, hypothalamic inflammation and sympathetic nervous system tone. Assessment of gut microbial populations revealed VSG-induced increases in the relative abundance of Gammaproteobacteria and Enterococcus, and decreases in Adlercreutzia These results suggest that VSG reduces blood pressure, but this is only partly due to the reduction in body weight. VSG-induced reductions in blood pressure may be driven by a decrease in hypothalamic ER stress and inflammatory signaling, and shifts in gut microbial populations.


Assuntos
Pressão Sanguínea , Estresse do Retículo Endoplasmático , Gastrectomia , Hipotálamo/patologia , Animais , Peso Corporal , Ceco/microbiologia , Ingestão de Energia , Jejum/sangue , Microbioma Gastrointestinal , Grelina/sangue , Inflamação/patologia , Leptina/sangue , Masculino , Camundongos Endogâmicos C57BL , Norepinefrina/sangue , Transdução de Sinais
8.
Gut ; 66(2): 226-234, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-26511794

RESUMO

OBJECTIVE: Vertical sleeve gastrectomy (VSG) produces high rates of type 2 diabetes remission; however, the mechanisms responsible remain incompletely defined. VSG increases circulating bile acid concentrations and bile acid signalling through TGR5 improves glucose homeostasis. Therefore, we investigated the role of TGR5 signalling in mediating the glucoregulatory benefits of VSG. DESIGN: VSG or sham surgery was performed in high-fat-fed male Tgr5+/+ (wild type) and Tgr5-/- (knockout) littermates. Sham-operated mice were fed ad libitum or food restricted to match their body weight to VSG-operated mice. Body weight, food intake, energy expenditure, insulin signalling and circulating bile acid profiles were measured and oral glucose tolerance testing, islet immunohistochemistry and gut microbial profiling were performed. RESULTS: VSG decreased food intake and body weight, increased energy expenditure and circulating bile acid concentrations, improved fasting glycaemia, glucose tolerance and glucose-stimulated insulin secretion, enhanced nutrient-stimulated glucagon-like peptide 1 secretion and produced favourable shifts in gut microbial populations in both genotypes. However, the body weight-independent improvements in fasting glycaemia, glucose tolerance, hepatic insulin signalling, hepatic inflammation and islet morphology after VSG were attenuated in Tgr5-/- relative to Tgr5+/+ mice. Furthermore, VSG produced metabolically favourable alterations in circulating bile acid profiles that were blunted in Tgr5-/- relative to Tgr5+/+ mice. TGR5-dependent regulation of hepatic Cyp8b1 expression may have contributed to TGR5-mediated shifts in the circulating bile acid pool after VSG. CONCLUSIONS: These results suggest that TGR5 contributes to the glucoregulatory benefits of VSG surgery by promoting metabolically favourable shifts in the circulating bile acid pool.


Assuntos
Ácidos e Sais Biliares/sangue , Glicemia/metabolismo , Gastrectomia , Insulina/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animais , Peso Corporal , Ingestão de Alimentos , Metabolismo Energético , Jejum , Gastrectomia/métodos , Microbioma Gastrointestinal , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Teste de Tolerância a Glucose , Secreção de Insulina , Ilhotas Pancreáticas/química , Ilhotas Pancreáticas/patologia , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores Acoplados a Proteínas G/genética , Transdução de Sinais , Esteroide 12-alfa-Hidroxilase/metabolismo
9.
Microbiome ; 4(1): 30, 2016 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-27338587

RESUMO

BACKGROUND: Gastrointestinal disturbances are among symptoms commonly reported by individuals diagnosed with myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). However, whether ME/CFS is associated with an altered microbiome has remained uncertain. Here, we profiled gut microbial diversity by sequencing 16S ribosomal ribonucleic acid (rRNA) genes from stool as well as inflammatory markers from serum for cases (n = 48) and controls (n = 39). We also examined a set of inflammatory markers in blood: C-reactive protein (CRP), intestinal fatty acid-binding protein (I-FABP), lipopolysaccharide (LPS), LPS-binding protein (LBP), and soluble CD14 (sCD14). RESULTS: We observed elevated levels of some blood markers for microbial translocation in ME/CFS patients; levels of LPS, LBP, and sCD14 were elevated in ME/CFS subjects. Levels of LBP correlated with LPS and sCD14 and LPS levels correlated with sCD14. Through deep sequencing of bacterial rRNA markers, we identified differences between the gut microbiomes of healthy individuals and patients with ME/CFS. We observed that bacterial diversity was decreased in the ME/CFS specimens compared to controls, in particular, a reduction in the relative abundance and diversity of members belonging to the Firmicutes phylum. In the patient cohort, we find less diversity as well as increases in specific species often reported to be pro-inflammatory species and reduction in species frequently described as anti-inflammatory. Using a machine learning approach trained on the data obtained from 16S rRNA and inflammatory markers, individuals were classified correctly as ME/CFS with a cross-validation accuracy of 82.93 %. CONCLUSIONS: Our results indicate dysbiosis of the gut microbiota in this disease and further suggest an increased incidence of microbial translocation, which may play a role in inflammatory symptoms in ME/CFS.


Assuntos
Bactérias/classificação , Disbiose/diagnóstico , Síndrome de Fadiga Crônica/microbiologia , Sequenciamento de Nucleotídeos em Larga Escala/métodos , RNA Ribossômico 16S/análise , Análise de Sequência de DNA/métodos , Proteínas de Fase Aguda/metabolismo , Adulto , Idoso , Biodiversidade , Proteína C-Reativa/metabolismo , Proteínas de Transporte/metabolismo , Estudos de Casos e Controles , DNA Ribossômico/análise , Síndrome de Fadiga Crônica/metabolismo , Proteínas de Ligação a Ácido Graxo/metabolismo , Fezes/microbiologia , Feminino , Firmicutes/isolamento & purificação , Microbioma Gastrointestinal , Humanos , Receptores de Lipopolissacarídeos/metabolismo , Masculino , Glicoproteínas de Membrana/metabolismo , Pessoa de Meia-Idade , Filogenia , Adulto Jovem
10.
Cell Rep ; 8(1): 137-49, 2014 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-24953658

RESUMO

Chronic intake of Western diet has driven an epidemic of obesity and metabolic syndrome, but how it induces mortality remains unclear. Here, we show that chronic intake of a high-fat diet (HFD), not a low-fat diet, leads to severe pulmonary damage and mortality in mice deficient in Toll-like receptors 2 and 4 (DKO). Diet-induced pulmonary lesions are blocked by antibiotic treatment and are transmissible to wild-type mice upon either cohousing or fecal transplantation, pointing to the existence of bacterial pathogens. Indeed, diet and innate deficiency exert significant impact on gut microbiota composition. Thus, chronic intake of HFD promotes severe pulmonary damage and mortality in DKO mice in part via gut dysbiosis, a finding that may be important for immunodeficient patients, particularly those on chemotherapy or radiotherapy, where gut-microbiota-caused conditions are often life threatening.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Disbiose/complicações , Pneumopatias/etiologia , Microbiota , Receptor 2 Toll-Like/deficiência , Receptor 4 Toll-Like/deficiência , Animais , Disbiose/etiologia , Disbiose/imunologia , Imunidade Inata , Intestinos/imunologia , Intestinos/microbiologia , Pneumopatias/patologia , Camundongos , Camundongos Endogâmicos C57BL , Receptor 2 Toll-Like/genética , Receptor 4 Toll-Like/genética
11.
Gut ; 63(7): 1069-80, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23896971

RESUMO

BACKGROUND: Inflammatory bowel disease (IBD) is driven by a seemingly aberrant immune response to the gut microbiota with disease development dictated by genetics and environmental factors. A model exemplifying this notion is our recent demonstration that colonisation of adherent-invasive Escherichia coli (AIEC) during microbiota acquisition drove chronic colitis in mice lacking the flagellin receptor TLR5 (T5KO). T5KO colitis persisted beyond AIEC clearance and requires TLR4 and the NLRC4 inflammasome. We hypothesised that AIEC instigates chronic inflammation by increasing microbial lipopolysaccharide (LPS) and flagellin levels. GOAL: Examine if transient AIEC colonisation lastingly alters levels of LPS and flagellin and changes microbiota composition. METHODS: Germ-free mice (wild type (WT) and T5KO) were inoculated with AIEC strain LF82 and placed in standard housing allowing a complex microbiota that eliminated AIEC in both mice strains. Faeces were assayed for the inflammatory marker, lipocalin-2, bacterial loads, and microbiota composition by pyrosequencing. Faecal LPS and flagellin bioactivity were measured via a cell-based reporter assay. RESULTS: Transient AIEC colonisation, in WT mice, did not alter inflammatory markers, bacterial loads, microbiota composition, nor its pro-inflammatory potential. By contrast, transient AIEC colonisation of T5KO mice drove chronic inflammation which correlated with microbiota components having higher levels of bioactive LPS and flagellin. Such AIEC-induced elevation of LPS and flagellin persisted well beyond AIEC clearance, required AIEC be flagellated, and was associated with alteration in microbiota species composition including a loss of species diversity. CONCLUSIONS: AIEC, and perhaps other pathobionts, may instigate chronic inflammation in susceptible hosts by altering the gut microbiota composition so as to give it an inherently greater ability to activate innate immunity/pro-inflammatory gene expression.


Assuntos
Colite/microbiologia , Colo/microbiologia , Infecções por Escherichia coli/complicações , Mucosa Intestinal/microbiologia , Microbiota , Receptor 5 Toll-Like/deficiência , Proteínas de Fase Aguda/metabolismo , Animais , Aderência Bacteriana/imunologia , Carga Bacteriana , Biomarcadores/metabolismo , Doença Crônica , Colite/imunologia , DNA Bacteriano/análise , Ensaio de Imunoadsorção Enzimática , Escherichia coli/genética , Escherichia coli/imunologia , Infecções por Escherichia coli/imunologia , Fezes/química , Fezes/microbiologia , Flagelina/metabolismo , Vida Livre de Germes , Imunidade Inata , Mucosa Intestinal/imunologia , Lipocalina-2 , Lipocalinas/metabolismo , Lipopolissacarídeos/metabolismo , Camundongos , Camundongos Knockout , Proteínas Oncogênicas/metabolismo , Análise de Sequência de DNA
12.
PLoS One ; 6(12): e29032, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22194981

RESUMO

INTRODUCTION: Branched chain fatty acids (BCFA) are found in the normal term human newborn's gut, deposited as major components of vernix caseosa ingested during late fetal life. We tested the hypothesis that premature infants' lack of exposure to gastrointestinal (GI) BCFA is associated with their microbiota and risk for necrotizing enterocolitis (NEC) using a neonatal rat model. METHODS: Pups were collected one day before scheduled birth. The pups were exposed to asphyxia and cold stress to induce NEC. Pups were assigned to one of three experimental treatments. DF (dam-fed); Control, hand-fed rat milk substitute; BCFA, hand-fed rat milk substitute with 20%w/w BCFA. Total fat was equivalent (11%wt) for both the Control and BCFA groups. Cecal microbiota were characterized by 16S rRNA gene pyrosequencing, and intestinal injury, ileal cytokine and mucin gene expression, interleukin-10 (IL-10) peptide immunohistochemistry, and BCFA uptake in ileum phospholipids, serum and liver were assessed. RESULTS: NEC incidence was reduced by over 50% in the BCFA group compared to the Control group as assessed in ileal tissue; microbiota differed among all groups. BCFA-fed pups harbored greater levels of BCFA-associated Bacillus subtilis and Pseudomonas aeruginosa compared to Controls. Bacillus subtilis levels were five-fold greater in healthy pups compared to pups with NEC. BCFA were selectively incorporated into ileal phospholipids, serum and liver tissue. IL-10 expression increased three-fold in the BCFA group versus Controls and no other inflammatory or mucosal mRNA markers changed. CONCLUSION: At constant dietary fat level, BCFA reduce NEC incidence and alter microbiota composition. BCFA are also incorporated into pup ileum where they are associated with enhanced IL-10 and may exert other specific effects.


Assuntos
Bactérias/efeitos dos fármacos , Enterocolite Necrosante/tratamento farmacológico , Enterocolite Necrosante/microbiologia , Ácidos Graxos/farmacologia , Ácidos Graxos/uso terapêutico , Trato Gastrointestinal/efeitos dos fármacos , Trato Gastrointestinal/microbiologia , Animais , Animais Recém-Nascidos , Bactérias/genética , Cromatografia Gasosa , Dieta , Modelos Animais de Doenças , Enterocolite Necrosante/genética , Ácidos Graxos/sangue , Ácidos Graxos/química , Trato Gastrointestinal/metabolismo , Trato Gastrointestinal/patologia , Regulação da Expressão Gênica/efeitos dos fármacos , Variação Genética/efeitos dos fármacos , Saúde , Íleo/efeitos dos fármacos , Íleo/metabolismo , Íleo/patologia , Imuno-Histoquímica , Incidência , Interleucina-10/genética , Interleucina-10/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Mucinas/genética , Mucinas/metabolismo , Neuropeptídeos/genética , Neuropeptídeos/metabolismo , Peptídeos/metabolismo , Fosfolipídeos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Fator Trefoil-3
13.
Science ; 328(5975): 228-31, 2010 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-20203013

RESUMO

Metabolic syndrome is a group of obesity-related metabolic abnormalities that increase an individual's risk of developing type 2 diabetes and cardiovascular disease. Here, we show that mice genetically deficient in Toll-like receptor 5 (TLR5), a component of the innate immune system that is expressed in the gut mucosa and that helps defend against infection, exhibit hyperphagia and develop hallmark features of metabolic syndrome, including hyperlipidemia, hypertension, insulin resistance, and increased adiposity. These metabolic changes correlated with changes in the composition of the gut microbiota, and transfer of the gut microbiota from TLR5-deficient mice to wild-type germ-free mice conferred many features of metabolic syndrome to the recipients. Food restriction prevented obesity, but not insulin resistance, in the TLR5-deficient mice. These results support the emerging view that the gut microbiota contributes to metabolic disease and suggest that malfunction of the innate immune system may promote the development of metabolic syndrome.


Assuntos
Fenômenos Fisiológicos Bacterianos , Imunidade Inata , Intestinos/microbiologia , Síndrome Metabólica/etiologia , Receptor 5 Toll-Like/metabolismo , Animais , Glicemia/análise , Distribuição da Gordura Corporal , Peso Corporal , Restrição Calórica , Gorduras na Dieta/administração & dosagem , Feminino , Vida Livre de Germes , Hiperfagia/etiologia , Resistência à Insulina , Mucosa Intestinal/imunologia , Masculino , Síndrome Metabólica/imunologia , Síndrome Metabólica/microbiologia , Camundongos , Camundongos Knockout , Obesidade/etiologia , Obesidade/imunologia , Obesidade/microbiologia , Obesidade/prevenção & controle , Receptor 5 Toll-Like/deficiência , Receptor 5 Toll-Like/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA