Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Cancer Rep (Hoboken) ; 5(2): e1459, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34245130

RESUMO

BACKGROUND: Data are steadily accruing that demonstrate that intestinal tumors are frequently derived from multiple founding cells, resulting in tumors comprised of distinct ancestral clones that might cooperate or alternatively compete, thereby potentially impacting different phases of the disease process. AIM: We sought to determine whether tumors with a multi-ancestral architecture involving at least two distinct clones show increased tumor number, growth, progression, or resistance to drug intervention. METHODS: Mice carrying the Min allele of Apc were generated that were mosaic with only a subset of cells in the intestinal epithelium expressing an activated form of PI3K, a key regulatory kinase affecting several important cellular processes. These cells were identifiable as they fluoresced green, whereas all other cells fluoresced red. RESULTS: Cell lineage tracing revealed that many intestinal tumors from our mouse model were derived from at least two founding cells, those expressing the activated PI3K (green) and those which did not (red). Heterotypic tumors with a multi-ancestral architecture as evidenced by a mixture of green and red cells exhibited increased tumor growth and invasiveness. Clonal architecture also had an impact on tumor response to low-dose aspirin. Aspirin treatment resulted in a greater reduction of heterotypic tumors derived from multiple founding cells as compared to tumors derived from a single founding cell. CONCLUSION: These data indicate that genetically distinct tumor-founding cells can contribute to early intratumoral heterogeneity. The coevolution of the founding cells and their progeny enhances colon tumor progression and impacts the response to aspirin. These findings are important to a more complete understanding of tumorigenesis with consequences for several distinct models of tumor evolution. They also have practical implications to the clinic. Mouse models with heterogenous tumors are likely better for predicting drug efficacy as compared to models in which the tumors are highly homogeneous. Moreover, understanding how interactions among different populations in a single heterotypic tumor with a multi-ancestral architecture impact response to a single agent and combination therapies are necessary to fully develop personalized medicine.


Assuntos
Transformação Celular Neoplásica/genética , Neoplasias Intestinais/genética , Animais , Antineoplásicos/farmacologia , Carcinogênese/genética , Carcinogênese/patologia , Transformação Celular Neoplásica/patologia , Modelos Animais de Doenças , Progressão da Doença , Resistencia a Medicamentos Antineoplásicos/genética , Neoplasias Intestinais/tratamento farmacológico , Neoplasias Intestinais/patologia , Camundongos , Camundongos Transgênicos
2.
Front Oncol ; 11: 705562, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34513688

RESUMO

An urgent need exists to identify efficacious therapeutic preventive interventions for individuals who are at high risk of developing colorectal cancer. To maximize the benefits of preventive intervention, it is vital to identify the time interval during which the initiation of a preventive intervention will lead to an optimal outcome. The goal of the present study was to determine if oncogenic events can be detected in the nonneoplastic colonic mucosa of Apc+/Min-FCCC mice prior to formation of the first adenoma, thus defining an earlier point of intervention along the cancer continuum. Tissues taken at three potential points of intervention were characterized: prior to Apc mutation (wild type Apc+/+-FCCC mice); after initiation but prior to colon adenoma formation (tumor-free Apc+/Min-FCCC mice); and after formation of the first colon adenoma (tumor-bearing Apc+/Min-FCCC mice). Experimentation focused on molecular processes that are dysregulated in early colon lesions: 1) cellular proliferation (proliferative index and size of the proliferative zone); 2) cellular stemness (expression of Ascl2, Grem1, Lgr5 and Muc2); 3) EGFR signaling (expression of Ereg); and 4) inflammation (expression of Mmp9, Ptsg2, and Reg4, as well as secretion of 18 cytokines involved in immune activation and response). Interestingly, the nonneoplastic colonic mucosa of wild type, tumor-free Apc+/Min-FCCC , and tumor-bearing Apc+/Min-FCCC mice did not display significant differences in average epithelial cell proliferation (fold change 0.8-1.3, p≥0.11), mucosal gene expression (fold change 0.8-1.4, p≥0.22), or secretion of specific cytokines from colonic mucosa (fold change 0.2-1.5, p≥0.06). However, the level of cytokine secretion was highly variable, with many (22% of wild type, 31% of tumor-free Apc+/Min-FCCC , and 31% of tumor-bearing Apc+/Min-FCCC ) mice categorized as outliers (> 1.5 x interquartile ranges below the first quartile or above the third quartile) due to elevated expression of at least one cytokine. In summary, no differences were observed in proliferation, stemness, and EGFR signaling in the colonic mucosa of wild type vs Apc+/Min-FCCC mice, with low baseline cytokine expression, prior to the formation of the first colon adenoma. The results of this study provide valuable baseline data to inform the design of future cancer prevention studies.

3.
Cancers (Basel) ; 13(4)2021 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-33671373

RESUMO

Novel immunopreventive strategies are emerging that show great promise for conferring long-term protection to individuals at high risk of developing colorectal cancer. The KISIMA vaccine platform utilizes a chimeric protein comprising: (1) a selected tumor antigen; (2) a cell-penetrating peptide to improve antigen delivery and epitope presentation, and (3) a TLR2/4 agonist to serve as a self-adjuvant. This study examines the ability of a KISIMA vaccine against achaete-scute family bHLH transcription factor 2 (Ascl2), an early colon cancer antigen, to reduce colon tumor formation by stimulating an anti-tumor immune response. Vaccine administrations were well-tolerated and led to circulating antibodies and antigen-specific T cells in a mouse model of colorectal cancer. To assess preventive efficacy, the vaccine was administered to mice either alone or in combination with the immune checkpoint inhibitor anti-PD-1. When delivered to animals prior to colon tumor formation, the combination strategy significantly reduced the development of colon microadenomas and adenomas, as compared to vehicle-treated controls. This response was accompanied by an increase in the intraepithelial density of CD3+ T lymphocytes. Together, these data indicate that the KISIMA-Ascl2 vaccine shows great potential to be a safe and potent immunopreventive intervention for individuals at high risk of developing colorectal cancer.

4.
Genes (Basel) ; 10(11)2019 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-31703321

RESUMO

Colorectal cancer (CRC) is a leading cause of cancer-related deaths worldwide. Mouse models are a valuable resource for use throughout the development and testing of new therapeutic strategies for CRC. Tumorigenesis and response to therapy in humans and mouse models alike are influenced by the microbial communities that colonize the gut. Differences in the composition of the gut microbiota can confound experimental findings and reduce the replicability and translatability of the resulting data. Despite this, the contribution of resident microbiota to preclinical tumor models is often underappreciated. This review does the following: (1) summarizes evidence that the gut microbiota influence CRC disease phenotypes; (2) outlines factors that can influence the composition of the gut microbiota; and (3) provides strategies that can be incorporated into the experimental design, to account for the influence of the microbiota on intestinal phenotypes in mouse models of CRC. Through careful experimental design and documentation, mouse models can continue to rapidly advance efforts to prevent and treat colon cancer.


Assuntos
Neoplasias Colorretais/microbiologia , Microbioma Gastrointestinal , Animais , Carcinogênese , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/patologia , Modelos Animais de Doenças , Resistencia a Medicamentos Antineoplásicos , Camundongos
5.
Cancer Prev Res (Phila) ; 9(8): 638-41, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27199343

RESUMO

Advances in DNA sequencing have created new opportunities to better understand the biology of cancers. Attention is currently focused on precision medicine: does a cancer carry a mutation that is targetable with already available drugs? But, the timing at which multiple, targetable mutations arise during the adenoma to carcinoma sequence remains unresolved. Borras and colleagues identified mutations and allelic imbalance in at-risk mucosa and early polyps in the human colon. Their analyses indicate that mutations in key genes can arise quite early during tumorigenesis and that polyps are often multiclonal with at least two clones. These results are consistent with the "Big Bang" model of tumorigenesis, which postulates that intratumoral heterogeneity is a consequence of a mutational burst in the first few cell divisions following initiation that drives divergence from a single founder with unique but related clones coevolving. Emerging questions center around the ancestry of the tumor and impact of early intratumoral heterogeneity on tumor establishment, growth, progression, and most importantly, response to therapeutic intervention. Additional sequencing studies in which samples, especially at-risk tissue and premalignant neoplasms, are analyzed from animal models and humans will further our understanding of tumorigenesis and lead to more effective strategies for prevention and treatment. Cancer Prev Res; 9(8); 638-41. ©2016 AACRSee related article by Borras, et al., Cancer Prev Res 2016;9(6):417-427.


Assuntos
Carcinogênese/genética , Colo/patologia , Pólipos do Colo/genética , Neoplasias Colorretais/genética , Lesões Pré-Cancerosas/genética , Adenoma/genética , Adenoma/patologia , Animais , Carcinogênese/patologia , Pólipos do Colo/patologia , Neoplasias Colorretais/patologia , Análise Mutacional de DNA , Genes APC , Heterogeneidade Genética , Humanos , Camundongos , Mutação , Lesões Pré-Cancerosas/patologia
6.
PLoS One ; 11(2): e0150170, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26919712

RESUMO

A widely accepted paradigm in the field of cancer biology is that solid tumors are uni-ancestral being derived from a single founder and its descendants. However, data have been steadily accruing that indicate early tumors in mice and humans can have a multi-ancestral origin in which an initiated primogenitor facilitates the transformation of neighboring co-genitors. We developed a new mouse model that permits the determination of clonal architecture of intestinal tumors in vivo and ex vivo, have validated this model, and then used it to assess the clonal architecture of adenomas, intramucosal carcinomas, and invasive adenocarcinomas of the intestine. The percentage of multi-ancestral tumors did not significantly change as tumors progressed from adenomas with low-grade dysplasia [40/65 (62%)], to adenomas with high-grade dysplasia [21/37 (57%)], to intramucosal carcinomas [10/23 (43%]), to invasive adenocarcinomas [13/19 (68%)], indicating that the clone arising from the primogenitor continues to coexist with clones arising from co-genitors. Moreover, neoplastic cells from distinct clones within a multi-ancestral adenocarcinoma have even been observed to simultaneously invade into the underlying musculature [2/15 (13%)]. Thus, intratumoral heterogeneity arising early in tumor formation persists throughout tumorigenesis.


Assuntos
Adenocarcinoma/patologia , Adenoma/patologia , Carcinoma in Situ/patologia , Transformação Celular Neoplásica , Neoplasias Intestinais/patologia , Células-Tronco Neoplásicas/patologia , Adenocarcinoma/genética , Adenoma/genética , Animais , Carcinoma in Situ/genética , Linhagem da Célula , Transformação Celular Neoplásica/genética , Células Clonais/patologia , Modelos Animais de Doenças , Progressão da Doença , Evolução Molecular , Proteínas de Ligação a Ácido Graxo/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Genes APC , Genes Reporter , Integrases/genética , Mucosa Intestinal/patologia , Neoplasias Intestinais/genética , Proteínas Luminescentes/análise , Proteínas Luminescentes/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Biológicos , Mosaicismo , Invasividade Neoplásica , RNA não Traduzido/genética , Ratos , Transgenes , Microambiente Tumoral
7.
PLoS One ; 11(2): e0148730, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26863299

RESUMO

The phosphoinositide 3-kinase (PI3K) signaling pathway is critical for multiple important cellular functions, and is one of the most commonly altered pathways in human cancers. We previously developed a mouse model in which colon cancers were initiated by a dominant active PI3K p110-p85 fusion protein. In that model, well-differentiated mucinous adenocarcinomas developed within the colon and initiated through a non-canonical mechanism that is not dependent on WNT signaling. To assess the potential relevance of PI3K mutations in human cancers, we sought to determine if one of the common mutations in the human disease could also initiate similar colon cancers. Mice were generated expressing the Pik3caH1047R mutation, the analog of one of three human hotspot mutations in this gene. Mice expressing a constitutively active PI3K, as a result of this mutation, develop invasive adenocarcinomas strikingly similar to invasive adenocarcinomas found in human colon cancers. These tumors form without a polypoid intermediary and also lack nuclear CTNNB1 (ß-catenin), indicating a non-canonical mechanism of tumor initiation mediated by the PI3K pathway. These cancers are sensitive to dual PI3K/mTOR inhibition indicating dependence on the PI3K pathway. The tumor tissue remaining after treatment demonstrated reduction in cellular proliferation and inhibition of PI3K signaling.


Assuntos
Adenocarcinoma/genética , Neoplasias do Colo/genética , Fosfatidilinositol 3-Quinases/genética , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/enzimologia , Adenocarcinoma/patologia , Animais , Antineoplásicos/farmacologia , Carcinogênese/genética , Classe I de Fosfatidilinositol 3-Quinases , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/enzimologia , Neoplasias do Colo/patologia , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Estudos de Associação Genética , Predisposição Genética para Doença , Imidazóis/farmacologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mutação de Sentido Incorreto , Inibidores de Fosfoinositídeo-3 Quinase , Quinolinas/farmacologia , Serina-Treonina Quinases TOR/antagonistas & inibidores , Carga Tumoral/efeitos dos fármacos
8.
Cancer Prev Res (Phila) ; 8(10): 952-61, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26276752

RESUMO

Human colorectal cancers often possess multiple mutations, including three to six driver mutations per tumor. The timing of when these mutations occur during tumor development and progression continues to be debated. More advanced lesions carry a greater number of driver mutations, indicating that colon tumors might progress from adenomas to carcinomas through the stepwise accumulation of mutations following tumor initiation. However, mutations that have been implicated in tumor progression have been identified in normal-appearing epithelial cells of the colon, leaving the possibility that these mutations might be present before the initiation of tumorigenesis. We utilized mouse models of colon cancer to investigate whether tumorigenesis still occurs through the adenoma-to-carcinoma sequence when multiple mutations are present at the time of tumor initiation. To create a model in which tumors could concomitantly possess mutations in Apc, Kras, and Pik3ca, we developed a novel minimally invasive technique to administer an adenovirus expressing Cre recombinase to a focal region of the colon. Here, we demonstrate that the presence of these additional driver mutations at the time of tumor initiation results in increased tumor multiplicity and an increased rate of progression to invasive adenocarcinomas. These cancers can even metastasize to retroperitoneal lymph nodes or the liver. However, despite having as many as three concomitant driver mutations at the time of initiation, these tumors still proceed through the adenoma-to-carcinoma sequence.


Assuntos
Adenocarcinoma/genética , Adenoma/genética , Neoplasias do Colo/genética , Neoplasias do Colo/patologia , Genes APC , Fosfatidilinositol 3-Quinases/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Adenocarcinoma/patologia , Adenoma/patologia , Animais , Classe I de Fosfatidilinositol 3-Quinases , Modelos Animais de Doenças , Progressão da Doença , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mutação
9.
PLoS One ; 9(10): e109668, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25286226

RESUMO

The treatment of localized colorectal cancer (CRC) depends on resection of the primary tumor with adequate margins and sufficient lymph node sampling. A novel imaging agent that accumulates in CRCs and the associated lymph nodes is needed. Cellectar Biosciences has developed a phospholipid ether analog platform that is both diagnostic and therapeutic. CLR1502 is a near-infrared fluorescent molecule, whereas 124/131I-CLR1404 is under clinical investigation as a PET tracer/therapeutic agent imaged by SPECT. We investigated the use of CLR1502 for the detection of intestinal cancers in a murine model and 131I-CLR1404 in a patient with metastatic CRC. Mice that develop multiple intestinal tumors ranging from adenomas to locally advanced adenocarcinomas were utilized. After 96 hours post CLR1502 injection, the intestinal tumors were analyzed using a Spectrum IVIS (Perkin Elmer) and a Fluobeam (Fluoptics). The intensity of the fluorescent signal was correlated with the histological characteristics for each tumor. Colon adenocarcinomas demonstrated increased accumulation of CLR1502 compared to non-invasive lesions (total radiant efficiency: 1.76×10(10) vs 3.27×10(9) respectively, p = 0.006). Metastatic mesenteric tumors and uninvolved lymph nodes were detected with CLR1502. In addition, SPECT imaging with 131I-CLR1404 was performed as part of a clinical trial in patients with advanced solid tumors. 131I-CLR1404 was shown to accumulate in metastatic tumors in a patient with colorectal adenocarcinoma. Together, these compounds might enhance our ability to properly resect CRCs through better localization of the primary tumor and improved lymph node identification as well as detect distant disease.


Assuntos
Neoplasias Colorretais/diagnóstico por imagem , Indóis , Iodobenzenos , Éteres Fosfolipídicos , Fosforilcolina , Adenocarcinoma/diagnóstico por imagem , Animais , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Feminino , Humanos , Indóis/metabolismo , Neoplasias Intestinais/diagnóstico por imagem , Iodobenzenos/metabolismo , Metástase Linfática , Camundongos , Invasividade Neoplásica , Éteres Fosfolipídicos/metabolismo , Fosforilcolina/metabolismo , Tomografia Computadorizada de Emissão de Fóton Único
10.
Cancer Prev Res (Phila) ; 7(1): 105-13, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24196829

RESUMO

Colorectal cancer often arises from adenomatous colonic polyps. Polyps can grow and progress to cancer, but may also remain static in size, regress, or resolve. Predicting which polyps progress and which remain benign is difficult. We developed a novel long-lived murine model of colorectal cancer with tumors that can be followed by colonoscopy. Our aim was to assess whether these tumors have similar growth patterns and histologic fates to human colorectal polyps to identify features to aid in risk stratification of colonic tumors. Long-lived Apc(Min/+) mice were treated with dextran sodium sulfate to promote colonic tumorigenesis. Tumor growth patterns were characterized by serial colonoscopy with biopsies obtained for immunohistochemistry and gene expression profiling. Tumors grew, remained static, regressed, or resolved over time with different relative frequencies. Newly developed tumors demonstrated higher rates of growth and resolution than more established tumors that tended to remain static in size. Colonic tumors were hyperplastic lesions (3%), adenomas (73%), intramucosal carcinomas (20%), or adenocarcinomas (3%). Interestingly, the level of ß-catenin was higher in adenomas that became intratumoral carcinomas than those that failed to progress. In addition, differentially expressed genes between adenomas and intramucosal carcinomas were identified. This novel murine model of intestinal tumorigenesis develops colonic tumors that can be monitored by serial colonoscopy, mirror growth patterns seen in human colorectal polyps, and progress to colorectal cancer. Further characterization of cellular and molecular features is needed to determine which features can be used to risk-stratify polyps for progression to colorectal cancer and potentially guide prevention strategies.


Assuntos
Pólipos do Colo/patologia , Neoplasias Colorretais/patologia , Modelos Animais de Doenças , Proteína da Polipose Adenomatosa do Colo/genética , Pólipos Adenomatosos/patologia , Animais , Colonoscopia , Progressão da Doença , Feminino , Regulação Neoplásica da Expressão Gênica , Genótipo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Análise de Sequência com Séries de Oligonucleotídeos , Fatores de Tempo
11.
Proc Natl Acad Sci U S A ; 110(28): 11523-8, 2013 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-23798428

RESUMO

Intestinal tumors from mice and humans can have a polyclonal origin. Statistical analyses indicate that the best explanation for this source of intratumoral heterogeneity is the presence of interactions among multiple progenitors. We sought to better understand the nature of these interactions. An initial progenitor could recruit others by facilitating the transformation of one or more neighboring cells. Alternatively, two progenitors that are independently initiated could simply cooperate to form a single tumor. These possibilities were tested by analyzing tumors from aggregation chimeras that were generated by fusing together embryos with unequal predispositions to tumor development. Strikingly, numerous polyclonal tumors were observed even when one genetic component was highly, if not completely, resistant to spontaneous tumorigenesis in the intestine. Moreover, the observed number of polyclonal tumors could be explained by the facilitated transformation of a single neighbor within 144 µm of an initial progenitor. These findings strongly support recruitment instead of cooperation. Thus, it is conceivable that these interactions are necessary for tumors to thrive, so blocking them might be a highly effective method for preventing the formation of tumors in the intestine and other tissues.


Assuntos
Transformação Celular Neoplásica , Neoplasias Intestinais/patologia , Animais , Células Epiteliais/patologia , Genes APC , Humanos , Neoplasias Intestinais/genética , Camundongos , Camundongos Endogâmicos C57BL
12.
PLoS One ; 8(4): e60709, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23593290

RESUMO

The phosphatidylinositide-3-kinase (PI3K) signaling pathway is critical for multiple cellular functions including metabolism, proliferation, angiogenesis, and apoptosis, and is the most commonly altered pathway in human cancers. Recently, we developed a novel mouse model of colon cancer in which tumors are initiated by a dominant active PI3K (FC PIK3ca). The cancers in these mice are moderately differentiated invasive mucinous adenocarcinomas of the proximal colon that develop by 50 days of age. Interestingly, these cancers form without a benign intermediary or aberrant WNT signaling, indicating a non-canonical mechanism of tumorigenesis. Since these tumors are dependent upon the PI3K pathway, we investigated the potential for tumor response by the targeting of this pathway with rapamycin, an mTOR inhibitor. A cohort of FC PIK3ca mice were treated with rapamycin at a dose of 6 mg/kg/day or placebo for 14 days. FDG dual hybrid PET/CT imaging demonstrated a dramatic tumor response in the rapamycin arm and this was confirmed on necropsy. The tumor tissue remaining after treatment with rapamycin demonstrated increased pERK1/2 or persistent phosphorylated ribosomal protein S6 (pS6), indicating potential resistance mechanisms. This unique model will further our understanding of human disease and facilitate the development of therapeutics through pharmacologic screening and biomarker identification.


Assuntos
Neoplasias do Colo/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Serina-Treonina Quinases TOR/antagonistas & inibidores , Animais , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Classe I de Fosfatidilinositol 3-Quinases/metabolismo , Colo/patologia , Neoplasias do Colo/diagnóstico , Neoplasias do Colo/tratamento farmacológico , Fluordesoxiglucose F18 , Humanos , Sistema de Sinalização das MAP Quinases , Masculino , Camundongos , Imagem Multimodal , Necrose , Fosfatidilinositol 3-Quinases/genética , Tomografia por Emissão de Pósitrons , Inibidores de Proteínas Quinases/administração & dosagem , Transdução de Sinais/efeitos dos fármacos , Sirolimo/administração & dosagem , Sirolimo/farmacologia , Tomografia Computadorizada por Raios X
13.
Cancer Res ; 72(12): 2931-6, 2012 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-22525701

RESUMO

Aberrations in the phosphoinositide 3-kinase (PI3K) signaling pathway play a key role in the pathogenesis of numerous cancers by altering cellular growth, metabolism, proliferation, and apoptosis. Mutations in the catalytic domain of PI3K that generate a dominantly active kinase are commonly found in human colorectal cancers and have been thought to drive tumor progression but not initiation. However, the effects of constitutively activated PI3K upon the intestinal mucosa have not been previously studied in animal models. Here, we show that the expression of a dominantly active form of the PI3K protein in the mouse intestine results in hyperplasia and advanced neoplasia. Mice expressing constitutively active PI3K in the epithelial cells of the distal small bowel and colon rapidly developed invasive adenocarcinomas in the colon that spread into the mesentery and adjacent organs. The histologic characteristics of these tumors were strikingly similar to invasive mucinous colon cancers in humans. Interestingly, these tumors formed without a benign polypoid intermediary, consistent with the lack of aberrant WNT signaling observed. Together, our findings indicate a noncanonical mechanism of colon tumor initiation that is mediated through activation of PI3K. This unique model has the potential to further our understanding of human disease and facilitate the development of therapeutics through pharmacologic screening and biomarker identification.


Assuntos
Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Animais , Apoptose , Biomarcadores Tumorais , Proliferação de Células , Transformação Celular Neoplásica , Neoplasias Colorretais/metabolismo , Ativação Enzimática , Genótipo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Via de Sinalização Wnt
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA