Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 24(33): 10186-10195, 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39136297

RESUMO

Despite its significant clinical efficacy as a first-line treatment for advanced bladder cancer, cisplatin-based chemotherapy provides a limited benefit for patients with lymphovascular invasion (LVI), which is characterized by the presence of tumor emboli within blood vessels and associated with enhanced cisplatin resistance and metastatic potential. Notably, platelets, a critical component of LVI, hinder the delivery of chemotherapeutic agents to tumors and facilitate metastasis. Consequently, platelet function inhibition holds the potential to disrupt LVI formation, as well as augment the antitumor activity of cisplatin. Herein, we developed a tumor microenvironment-targeted nanodrug with lipid-coated mesoporous silica nanoparticles (silicasomes) that synergistically combines cisplatin with an antiplatelet agent, tirofiban, for bladder cancer treatment. The customized nanodrug can concurrently prevent LVI formation and enhance the chemotherapeutic efficacy without significant adverse effects. This study supports the integration of chemotherapy and antiplatelet therapy via a silicasome-based nanosystem as a highly promising strategy for bladder cancer management.


Assuntos
Cisplatino , Nanopartículas , Dióxido de Silício , Neoplasias da Bexiga Urinária , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/patologia , Humanos , Dióxido de Silício/química , Cisplatino/farmacologia , Cisplatino/química , Cisplatino/uso terapêutico , Nanopartículas/química , Linhagem Celular Tumoral , Animais , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Microambiente Tumoral/efeitos dos fármacos , Camundongos , Invasividade Neoplásica/prevenção & controle , Peptídeos Cíclicos/química , Peptídeos Cíclicos/farmacologia , Peptídeos Cíclicos/uso terapêutico , Oligopeptídeos
2.
Nat Rev Cancer ; 24(1): 72-87, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38040850

RESUMO

Systemic antiplatelet treatment represents a promising option to improve the therapeutic outcomes and therapeutic efficacy of chemotherapy and immunotherapy due to the critical contribution of platelets to tumour progression. However, until recently, targeting platelets as a cancer therapeutic has been hampered by the elevated risk of haemorrhagic and thrombocytopenic (low platelet count) complications owing to the lack of specificity for tumour-associated platelets. Recent work has advanced our understanding of the molecular mechanisms responsible for the contribution of platelets to tumour progression and metastasis. This has led to the identification of the biological changes in platelets in the presence of tumours, the complex interactions between platelets and tumour cells during tumour progression, and the effects of platelets on antitumour therapeutic response. In this Review, we present a detailed picture of the dynamic roles of platelets in tumour development and progression as well as their use in diagnosis, prognosis and monitoring response to therapy. We also provide our view on how to overcome challenges faced by the development of precise antiplatelet strategies for safe and efficient clinical cancer therapy.


Assuntos
Neoplasias , Humanos , Neoplasias/patologia , Plaquetas/patologia , Plaquetas/fisiologia , Imunoterapia
3.
Bioconjug Chem ; 34(10): 1894-1901, 2023 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-37787935

RESUMO

As a pleiotropic cytokine, interleukin-2 (IL-2) can effectively regulate lymphocyte proliferation, survival, and active antitumor immune responses in tumor microenvironments. Although the ability of IL-2 to boost immune responses was reported in cancer patients, its short circulating half-life and high toxicity hinder its broad and continual clinical application. Herein, we developed a novel tumor target agent by fusing pH low insertion peptides (pHLIP) with IL-2, forming the fusion protein pHLIP-IL2. Based on the low pH insertion property of pHLIP, the pHLIP-IL2 fusion protein could be selectively delivered to the acidic tumor microenvironments and then promote the proliferation of killer immune cells to elicit tumor regression. We found that pHLIP-IL2 fusion proteins can be significantly enriched in tumor tissues and can effectively reduce tumor size in diverse tumor models, including breast cancer and melanoma, without apparent adverse effects. These data suggest that the pHLIP-IL2 fusion protein may be a promising solution for the continual and extensive application of IL-2, and pHLIP-IL2 is a potential and valuable therapeutic drug for cancer patients with antitumor immunotherapy.


Assuntos
Interleucina-2 , Melanoma , Humanos , Linhagem Celular Tumoral , Concentração de Íons de Hidrogênio , Imunoterapia , Interleucina-2/administração & dosagem , Melanoma/tratamento farmacológico , Microambiente Tumoral , Sistemas de Liberação de Medicamentos
4.
Cell Rep Methods ; 3(7): 100513, 2023 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-37533637

RESUMO

A characteristic clinical complication in cancer patients is the frequent incidence of thrombotic events. Numerous studies have shown hyperactive/activated platelets to be a critical earlier trigger for cancer-associated thrombus formation. However, there currently is no viable approach to monitor specific changes in tumor-associated platelet activity. Here, we describe a chromatograph-like microfluidic device that is highly sensitive to the activity status of peripheral circulating platelets in both tumor-bearing mice and clinical cancer patients. Our results show a strongly positive correlation between platelet activation status and tumor progression. Six-month follow-up data from advanced cancer patients reveal positive links between platelet activity level and thrombus occurrence rate, with a high predictive capacity of thrombotic events (AUC = 0.842). Our findings suggest that circulating platelet activity status determined by this microfluidic device exhibits sensitive, predictive potential for thrombotic events in cancer patients for directing well-timed antithrombosis treatment.


Assuntos
Neoplasias , Trombose , Camundongos , Animais , Plaquetas/patologia , Ativação Plaquetária/fisiologia , Trombose/etiologia , Neoplasias/complicações
5.
Cancer Res ; 83(17): 2924-2937, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37326467

RESUMO

Nanoparticles (NP) spanning diverse materials and properties have the potential to encapsulate and to protect a wide range of therapeutic cargos to increase bioavailability, to prevent undesired degradation, and to mitigate toxicity. Fulvestrant, a selective estrogen receptor degrader, is commonly used for treating patients with estrogen receptor (ER)-positive breast cancer, but its broad and continual application is limited by poor solubility, invasive muscle administration, and drug resistance. Here, we developed an active targeting motif-modified, intravenously injectable, hydrophilic NP that encapsulates fulvestrant to facilitate its delivery via the bloodstream to tumors, improving bioavailability and systemic tolerability. In addition, the NP was coloaded with abemaciclib, an inhibitor of cyclin-dependent kinases 4 and 6 (CDK4/6), to prevent the development of drug resistance associated with long-term fulvestrant treatment. Targeting peptide modifications on the NP surface assisted in the site-specific release of the drugs to ensure specific toxicity in the tumor tissues and to spare normal tissue. The NP formulation (PPFA-cRGD) exhibited efficient tumor cell killing in both in vitro organoid models and in vivo orthotopic ER-positive breast cancer models without apparent adverse effects, as verified in mouse and Bama miniature pig models. This NP-based therapeutic provides an opportunity for continual and extensive clinical application of fulvestrant, thus indicating its promise as a treatment option for patients with ER-positive breast cancer. SIGNIFICANCE: A smart nanomedicine encapsulating fulvestrant to improve its half-life, bioavailability, and tumor-targeting and coloaded with CDK4/6 inhibitor abemaciclib to block resistance is a safe and effective therapy for ER-positive breast cancer.


Assuntos
Neoplasias , Receptores de Estrogênio , Animais , Camundongos , Suínos , Fulvestranto/farmacologia , Fulvestranto/uso terapêutico , Receptores de Estrogênio/metabolismo , Aminopiridinas/farmacologia , Neoplasias/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos , Linhagem Celular Tumoral
6.
Adv Sci (Weinh) ; 9(20): e2200477, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35524631

RESUMO

New strategies to decrease risk of relapse after surgery are needed for improving 5-year survival rate of hepatocellular carcinoma (HCC). To address this need, a wound-targeted nanodrug is developed, that contains an immune checkpoint inhibitor (anti-PD-L1)and an angiogenesis inhibitor (sorafenib)). These nanoparticles consist of highly biocompatible mesoporous silica (MSNP) that is surface-coated with platelet membrane (PM) to achieve surgical site targeting in a self-amplified accumulation manner. Sorafenib is introduced into the MSNP pores while covalently attaching anti-PD-L1 antibody on the PM surface. The resulting nano-formulation, abbreviated as a-PM-S-MSNP, can effectively target the surgical margin when intraperitoneally (IP) administered into an immune competent murine orthotopic HCC model. Multiple administrations of a-PM-S-MSNP generate potent anti-HCC effect and significantly prolong overall mice survival. Immunophenotyping and immunochemistry staining reveal the signatures of favorable anti-HCC immunity and anti-angiogenesis effect at tumor sites. More importantly, microscopic inspection of a-PM-S-MSNP treated mice shows that 2 out 6 are histologically tumor-free, which is in sharp contrast to the control mice where tumor foci can be easily identified. The data suggest that a-PM-S-MSNP can efficiently inhibit post-surgical HCC relapse without obvious side effects and holds considerable promise for clinical translation as a novel nanodrug.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Nanopartículas , Animais , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/cirurgia , Linhagem Celular Tumoral , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/cirurgia , Camundongos , Nanopartículas/uso terapêutico , Recidiva Local de Neoplasia/tratamento farmacológico , Sorafenibe/farmacologia , Sorafenibe/uso terapêutico
7.
Biomaterials ; 281: 121362, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34998170

RESUMO

Surgery is one of the main effective strategies for the treatment of solid tumors, but high postoperative recurrence is also the main cause of death in current cancer therapy. The prevention of postoperative hepatocellular carcinoma (HCC) recurrence is a clinical problem that needs to be solved urgently. At present, there are still some problems to be solved, such as, how to achieve free drugs to target the site of surgical resection; develop a strategy for the simultaneous administration of multiple drugs to inhibit postoperative recurrence; and provide the appropriate animal model that mimics the process of postoperative HCC recurrence. In this study, we used a facile and reproducible method to successfully prepare amphiphilic Janus nanoparticles (JNPs). In order to improve targeting of the JNPs to residual HCC cells after surgery, we modified the side of gold nanorods (GNRs) with lactobionic acid (LA), thus creating LA-JNPs. This provided an active and targeted co-delivery system for hydrophilic and hydrophobic drugs in separate rooms, thus avoiding mutual effects. Next, we established two models to simulate postoperative HCC recurrence: a subcutaneous postoperative recurrence model based on patient-derived tumor xenograft (PDX) tissues and a postoperative recurrence model of orthotopic HCC. By applying these models, the enhanced permeability and retention effect (EPR) based tumor targeting and LA based active targeting can jointly promote the enrichment and uptake of JNPs at tumor site. LA-JNPs represented an efficient targeting system for the co-delivery of Sorafenib/Doxorubicin with an optimized anti-recurrence effect and significantly improved the survival of mice during treatment for postoperative recurrence.


Assuntos
Antineoplásicos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Nanopartículas Multifuncionais , Nanopartículas , Inibidores da Angiogênese/uso terapêutico , Animais , Antineoplásicos/farmacologia , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/cirurgia , Linhagem Celular Tumoral , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/cirurgia , Camundongos , Nanopartículas/química
8.
J Dairy Sci ; 104(12): 12415-12426, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34482973

RESUMO

This study explores the experiences of a cohort of young, educated, internationally mobile Chinese consumers with cheese and other dairy products, and how these experiences shape their behavior toward cheese products. In total, 41 Chinese students studying at an Irish university participated in 5 focus groups (n = 41, n = 7-10). Thematic analysis identified important factors that influence consumer behaviors regarding cheese products. Individuals' expectations toward cheese were embedded in their knowledge structures, which were constructed from previous experience. Participants had general positive expectations toward cheese due to associations with western-style foods and nostalgia; however, direct eating experience determined long-term behavior. When making a purchase decision, choice motives were weighed and negotiated to establish a fundamental driving factor for purchase. Perceived probability of choice motive fulfillment was important in determining purchase decisions, with many participants having low perceived ability to select cheese and limited motivation to engage with cheese due to limited perceived relevance of cheese to their daily food life. Individuals' innovativeness was an important factor that influences their openness to cheese products when moving beyond familiar foods. Opportunities exist such as using nostalgic cues as marketing tools to increase consumers' interest in cheese or combining cheese with Chinese food to increase perceived relevance of cheese to their daily food life. Providing information at point of purchase could reduce the disconnect between expectation and actual experience, and innovative cheese products may be developed to better fulfill important choice motives.


Assuntos
Queijo , Comportamento do Consumidor , Animais , China , Comportamento de Escolha , Preferências Alimentares , Motivação , Paladar
9.
Acta Pharm Sin B ; 11(7): 2059-2069, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34386338

RESUMO

Selective occlusion of tumor vasculature has proven to be an effective strategy for cancer therapy. Among vascular coagulation agents, the extracellular domain of coagulation-inducing protein tissue factor, truncated tissue factor (tTF), is the most widely used. Since the truncated protein exhibits no coagulation activity and is rapidly cleared in the circulation, free tTF cannot be used for cancer treatment on its own but must be combined with other moieties. We here developed a novel, tumor-specific tTF delivery system through coupling tTF with the DNA aptamer, AS1411, which selectively binds to nucleolin receptors overexpressing on the surface of tumor vascular endothelial cells and is specifically cytotoxic to target cells. Systemic administration of the tTF-AS1411 conjugates into tumor-bearing animals induced intravascular thrombosis solely in tumors, thus reducing tumor blood supply and inducing tumor necrosis without apparent side effects. This conjugate represents a uniquely attractive candidate for the clinical translation of vessel occlusion agent for cancer therapy.

10.
Nano Lett ; 21(6): 2588-2595, 2021 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-33650872

RESUMO

Compared with traditional chemotherapeutics, vascular disruption agents (VDAs) have the advantages of rapidly blocking the supply of nutrients and starving tumors to death. Although the VDAs are effective under certain scenarios, this treatment triggers angiogenesis in the later stage of therapy that frequently leads to tumor recurrence and treatment failure. Additionally, the nonspecific tumor targeting and considerable side effects also impede the clinical applications of VDAs. Here we develop a customized strategy that combines a VDA with an anti-angiogenic drug (AAD) using mesoporous silica nanoparticles (MSNs) coated with platelet membrane for the self-assembled tumor targeting accumulation. The tailor-made nanoparticles accumulate in tumor tissues through the targeted adhesion of platelet membrane surface to damaged vessel sites, resulting in significant vascular disruption and efficient anti-angiogenesis in animal models. This study demonstrates the promising potential of combining VDA and AAD in a single nanoplatform for tumor eradication.


Assuntos
Nanopartículas , Neoplasias , Inibidores da Angiogênese/uso terapêutico , Animais , Neoplasias/tratamento farmacológico , Neovascularização Patológica/tratamento farmacológico , Dióxido de Silício/uso terapêutico
11.
Nat Biomed Eng ; 4(7): 732-742, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32572197

RESUMO

Drugs that induce thrombosis in the tumour vasculature have not resulted in long-term tumour eradication owing to tumour regrowth from tissue in the surviving rim of the tumour, where tumour cells can derive nutrients from adjacent non-tumoral blood vessels and tissues. Here, we report the performance of a combination of tumour-infarction therapy and chemotherapy, delivered via chitosan-based nanoparticles decorated with a tumour-homing peptide targeting fibrin-fibronectin complexes overexpressed on tumour-vessel walls and in tumour stroma, and encapsulating the coagulation-inducing protease thrombin and the chemotherapeutic doxorubicin. Systemic administration of the nanoparticles into mice and rabbits bearing subcutaneous or orthotopic tumours resulted in higher tumour growth suppression and decreased tumour recurrence than nanoparticles delivering only thrombin or doxorubicin, with histological and haematological analyses indicating an absence of detectable toxicity. The co-administration of a cytotoxic payload and a protease to elicit vascular infarction in tumours with biodegradable tumour-targeted nanoparticles represents a promising strategy for improving the therapeutic index of coagulation-based tumour therapy.


Assuntos
Antineoplásicos/administração & dosagem , Doxorrubicina/administração & dosagem , Sistemas de Liberação de Medicamentos/métodos , Tratamento Farmacológico/métodos , Infarto/tratamento farmacológico , Nanopartículas/química , Trombina/administração & dosagem , Animais , Antineoplásicos/química , Protocolos de Quimioterapia Combinada Antineoplásica , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Modelos Animais de Doenças , Doxorrubicina/química , Feminino , Neoplasias Hepáticas , Melanoma/tratamento farmacológico , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Nus , Coelhos , Ensaios Antitumorais Modelo de Xenoenxerto
12.
Acta Pharmacol Sin ; 41(7): 895-901, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32467568

RESUMO

Immunotherapy that activates the host immune system to reverse immunosuppression has emerged as a new generation of cancer treatment in both preclinical studies and clinical trials. Although immunotherapy has shown significant achievements in the treatment of various cancers, it faces challenges that limit its further evolution such as poor permeation and modest responsiveness. The development of nanoparticle drug delivery system has provided an opportunity to overcome these drawbacks and to achieve optimized immunotherapy. Based on the research of our group, we here introduce the new strategies being employed using nanoscale intelligent drug delivery systems to enhance the effects of cancer immunotherapy. We also provide a perspective on the further possible application of nanoparticles in more effective antitumor immunotherapy.


Assuntos
Imunossupressores/uso terapêutico , Imunoterapia , Neoplasias/terapia , Humanos , Terapia de Imunossupressão , Imunossupressores/imunologia , Neoplasias/imunologia , Neoplasias/patologia , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia
13.
Med Res Rev ; 40(3): 1084-1102, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31709590

RESUMO

To better make nanomedicine entering the clinic, developing new rationally designed nanotherapeutics with a deeper understanding of tumor biology is required. The tumor microenvironment is similar to the inflammatory response in a healing wound, the milieu of which promotes tumor cell invasion and metastasis. Successful targeting of the microenvironmental components with effective nanotherapeutics to modulate the tumor microvessels or restore the homeostatic mechanisms in the tumor stroma will offer new hope for cancer treatment. We here highlight the progress in constructing nanotherapeutics to target or modulate the tumor microenvironment. We discuss the factors necessary for nanomedicines to become a new paradigm in cancer therapy, including the selection of drugs and therapeutic targets, controllable synthesis, and tempo-spatial drug release.


Assuntos
Nanomedicina/métodos , Nanopartículas/química , Neoplasias/tratamento farmacológico , Microambiente Tumoral/efeitos dos fármacos , Animais , Antineoplásicos/farmacologia , DNA/química , Sistemas de Liberação de Medicamentos , Matriz Extracelular/metabolismo , Homeostase , Humanos , Oncologia/métodos , Oncologia/tendências , Camundongos , Nanomedicina/tendências , Invasividade Neoplásica , Metástase Neoplásica , Neovascularização Patológica , Permeabilidade , Células Estromais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA