Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
World J Clin Cases ; 12(21): 4652-4660, 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39070836

RESUMO

BACKGROUND: Endometriosis is a chronic inflammatory condition affecting a significant proportion of women of reproductive age. Although laparoscopic surgery is commonly the preferred treatment, the decision to preserve or remove the ovaries remains controversial. Previous studies have yielded inconsistent results regarding the impact of ovarian preservation vs oophorectomy on fertility outcomes and disease recurrence. This prospective study aimed to address this knowledge gap by comparing the effects of these surgical approaches on spontaneous pregnancy rates, time to pregnancy, recurrence rates, and postoperative pain in patients with endometriosis. AIM: To compare the reproductive outcomes and recurrence rates between ovarian preservation and oophorectomy in women undergoing laparoscopic surgery for endometriosis. METHODS: This study was conducted at a tertiary care hospital between January 2019 and December 2023. A total of 312 women aged 18 to 40 years, diagnosed with endometriosis and undergoing laparoscopic surgery, were included. The patients were categorized into the ovarian preservation group (n = 204) and the oophorectomy group (n = 108). The primary outcome measure was the achievement of spontaneous pregnancy within 24 months post-surgery. Secondary outcomes included time to spontaneous pregnancy, recurrence rates, and postoperative pain scores. RESULTS: The ovarian preservation group exhibited a significantly higher spontaneous pregnancy rate than that in the oophorectomy group (43.6% vs 28.7%, P = 0.006). Moreover, the median time to spontaneous pregnancy was shorter in the ovarian preservation group (8.2 months vs 11.4 months, P = 0.018). Nonetheless, endometriosis recurrence was more prevalent in the ovarian preservation group (22.1% vs 11.1%, P = 0.014). The postoperative pain scores demonstrated similar improvements in both groups, with no significant differences observed. Subgroup analyses indicated that the benefit of ovarian preservation on spontaneous pregnancy rates was more evident among younger women (≤ 35 years) and those with advanced-stage endometriosis. CONCLUSION: Ovarian preservation is associated with a high spontaneous pregnancy rate and a short time to pregnancy. However, because of the increased risk of recurrence, the decision should be based on age, fertility aspirations, and disease severity.

2.
Int J Biol Macromol ; 268(Pt 2): 131816, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38677682

RESUMO

Paeoniae Radix alba is used in Traditional Chinese Medicine for the treatment of gastrointestinal disorders, immunomodulatory, cancer, and other diseases. In the current study, the yield of Paeoniae Radix alba polysaccharide (PRP) was significantly increased with optimal ultrasound-assisted extraction compared to hot water extraction. Further, an acidic polysaccharide (PRP-AP) was isolated from PRP after chromatographic separation and was characterized as a typical pectic polysaccharide with side chains of arabinogalactans types I and II. Moreover, it showed antioxidant effects on LPS-induced damage on IPEC-J2 cells determined by qRT-PCR and ELISA, including decreasing the pro-inflammatory factors' expressions and increasing the antioxidant enzymes activities, which was shown to be related to the Nrf2/Keap1 pathway modulated by PRP-AP. The metabolites change (such as itaconate, cholesterol sulfate, etc.) detected by untargeted metabolomic analysis in cells was also shown to be modulated by PRP-AP, and these metabolites were further utilized and protected cells damaged by LPS. These results revealed the cellular active mechanism of the macromolecular PRP-AP on protecting cells, and supported the hypothesis that PRP-AP has strong benefits as an alternative dietary supplement for the prevention of intestinal oxidative stress by modulating cellular metabolism.


Assuntos
Antioxidantes , Paeonia , Polissacarídeos , Polissacarídeos/farmacologia , Polissacarídeos/química , Polissacarídeos/isolamento & purificação , Antioxidantes/farmacologia , Antioxidantes/química , Antioxidantes/isolamento & purificação , Paeonia/química , Ondas Ultrassônicas , Linhagem Celular , Animais , Estresse Oxidativo/efeitos dos fármacos , Fracionamento Químico/métodos , Lipopolissacarídeos/farmacologia
3.
Int J Biol Macromol ; 254(Pt 2): 127834, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37926312

RESUMO

Hirsutella sinensis is the anamorph of Ophiocordyceps sinensis, and its mycelia has been used to effectively treat a variety of hepatobiliary diseases in clinical practice. In the present study, we performed a systematic study on the composition and structure of its polysaccharides, and then employed a TGF-ß1-induced human intrahepatic bile duct epithelial cell-epithelial-mesenchymal transition (HIBEC-EMT) model to investigate their effects on treating primary biliary cholangitis (PBC) based on hepatic bile duct fibrosis. Four polysaccharide fractions were obtained from H. sinensis mycelia by hot-water extraction, DEAE-cellulose column and gradient ethanol precipitation separation. HSWP-1a was an α-(1,4)-D-glucan; HSWP-1b and HSWP-1d mainly consisted of mannoglucans with a backbone composed of 1,4-linked α-D-Glcp and 1,4,6-linked α-D-Manp residues branched at O-6 of the 1,4-linked α-D-Glcp with a 1-linked α-D-Glcp as a side chain; and HSWP-1c mainly contained galactomannoglucans. These polysaccharide fractions protected HIBECs from a TGF-ß1-induced EMT, according to HIBEC morphological changes, cell viability, decreased E-cadherin and ZO-1 expression, and increased vimentin and collagen I expression. Furthermore, the effects of the polysaccharides might be mediated by inhibiting the activation of the TGF-ß/Smad signaling pathway, which attenuated hepatic bile duct fibrosis and potential PBC effects.


Assuntos
Cordyceps , Hepatopatias , Humanos , Fator de Crescimento Transformador beta1/farmacologia , Fator de Crescimento Transformador beta1/metabolismo , Cordyceps/metabolismo , Transição Epitelial-Mesenquimal , Células Epiteliais , Ductos Biliares Intra-Hepáticos/metabolismo , Hepatopatias/metabolismo , Fibrose , Polissacarídeos/farmacologia , Polissacarídeos/metabolismo , Micélio/metabolismo , Caderinas/metabolismo
4.
J Ethnopharmacol ; 317: 116739, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37315647

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Lung adenocarcinoma (LUAD) is one of the main types of lung cancer. Ophiocordyceps sinensis has many potentially useful pharmacologic features, such as lung protection, and both anti-inflammatory and antioxidant activities. AIM OF THE STUDY: This study was conducted to investigate-using bioinformatics and in vivo experimental validation-the possible role of O. sinensis against LUAD. MATERIALS AND METHODS: We obtained important targets of O. sinensis for the treatment of LUAD using network pharmacology techniques and deep mining of the TCGA database, and validated them by molecular docking techniques and in vivo experiments. RESULTS: Through bioinformatics analysis and research, we screened BRCA1 and CCNE1 as important biomarkers for LUAD and as core targets of O. sinensis against LUAD. The non-small cell lung cancer signaling pathway, PI3K-Akt signaling pathway, and HIF-1 signaling pathway are potentially important pathways of O. sinensis against LUAD. The molecular docking results showed good binding between the active components in O. sinensis and the two core targets, and the in vivo experimental validation results indicated that O. sinensis had good inhibitory effects in the Lewis lung cancer (LLC) model. CONCLUSIONS: BRCA1 and CCNE1 are crucial biomarkers for LUAD and are important targets for O. sinensis to exert anti-LUAD effects.


Assuntos
Adenocarcinoma de Pulmão , Carcinoma Pulmonar de Células não Pequenas , Cordyceps , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Simulação de Acoplamento Molecular , Fosfatidilinositol 3-Quinases , Adenocarcinoma de Pulmão/tratamento farmacológico , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/metabolismo , Biologia Computacional
5.
Inorg Chem ; 62(50): 20549-20566, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-36608341

RESUMO

Radiolanthanides and actinides are aptly suited for the diagnosis and treatment of cancer via nuclear medicine because they possess unique chemical and physical properties (e.g., radioactive decay emissions). These rare radiometals have recently shown the potential to selectively deliver a radiation payload to cancer cells. However, their clinical success is highly dependent on finding a suitable ligand for stable chelation and conjugation to a disease-targeting vector. Currently, the commercially available chelates exploited in the radiopharmaceutical design do not fulfill all of the requirements for nuclear medicine applications, and there is a need to further explore their chemistry to rationally design highly specific chelates. Herein, we describe the rational design and chemical development of a novel decadentate acyclic chelate containing five 1,2-hydroxypyridinones, 3,4,3,3-(LI-1,2-HOPO), referred to herein as HOPO-O10, based on the well-known octadentate ligand 3,4,3-(LI-1,2-HOPO), referred to herein as HOPO-O8, a highly efficient chelator for 89Zr[Zr4+]. Analysis by 1H NMR spectroscopy and mass spectrometry of the La3+ and Tb3+ complexes revealed that HOPO-O10 forms bimetallic complexes compared to HOPO-O8, which only forms monometallic species. The radiolabeling properties of both chelates were screened with [135La]La3+, [155/161Tb]Tb3+, [225Ac]Ac3+ and, [227Th]Th4+. Comparable high specific activity was observed for the [155/161Tb]Tb3+ complexes, outperforming the gold-standard 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid, yet HOPO-O10 surpassed HOPO-O8 with higher [227Th]Th4+ affinity and improved complex stability in a human serum challenge assay. A comprehensive analysis of the decadentate and octadentate chelates was performed with density functional theory for the La3+, Ac3+, Eu3+, Tb3+, Lu3+, and Th4+ complexes. The computational simulations demonstrated the enhanced stability of Th4+-HOPO-O10 over Th4+-HOPO-O8. This investigation reveals the potential of HOPO-O10 for the stable chelation of large tetravalent radioactinides for nuclear medicine applications and provides insight for further chelate development.


Assuntos
Quelantes , Compostos Radiofarmacêuticos , Humanos , Compostos Radiofarmacêuticos/química , Ligantes , Quelantes/química
6.
Mol Cell Biochem ; 478(2): 277-284, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35779227

RESUMO

P311 is associated with alveolar formation and development. However, the role and possible mechanism of P311 in hyperoxia-induced injury in type II alveolar epithelial cells (AEC II) need to be elucidated. In our study, rat AEC II (RLE-6TN) were exposure to normoxia (21% O2 and 5% CO2) or hyperoxia (95% O2 and 5% CO2) for 24 h, followed by determination of P311 expression. After knockdown of P311 and hyperoxic treatment, cell viability, cell cycle progression, apoptosis and the Smad3 signaling pathway were examined. Rat AEC II were pretreated with SIS3 HCl for 4 h and then subjected to P311 overexpression plasmid transfection and hyperoxic exposure. Then, cell viability, apoptosis and the Smad3 signaling pathway were determined. The results showed that hyperoxic exposure significantly elevated P311 levels in rat AEC II. P311 knockdown increased cell viability, accelerated cell cycle progression and inhibited apoptosis, as well as suppression of the Smad3 signaling pathway in hyperoxia-exposed AEC II. Additionally, we found that P311 overexpression enhanced the effects of hyperoxia. Interestingly, SIS3 HCl incubation blocked the effects of P311 overexpression on rat AEC II function under hyperoxic condition, as evidenced by an increase in cell viability, and suppressions of apoptosis and the Smad3 signaling pathway. These results indicate that P311 knockdown may ameliorate hyperoxia-induced injury by inhibiting the Smad3 signaling pathway in rat AEC II. P311 may be a novel target for the treatment of hyperoxia-induced lung injury and even bronchopulmonary dysplasia (BPD).


Assuntos
Displasia Broncopulmonar , Hiperóxia , Humanos , Recém-Nascido , Ratos , Animais , Células Epiteliais Alveolares , Hiperóxia/metabolismo , Dióxido de Carbono/metabolismo , Displasia Broncopulmonar/genética , Transdução de Sinais , Apoptose , Células Epiteliais/metabolismo , Proteína Smad3/genética , Proteína Smad3/metabolismo
7.
J Ethnopharmacol ; 295: 115446, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35675860

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: The root of Angelica sinensis, has been commonly used in gynecology for centuries, and is normally applied divided into different parts in various clinical applications. At present, the majority of existing studies focus on the volatile oil and ferulic acid extracted from different parts of A. sinensis, but there is a dearth of scientific information on its water-soluble polysaccharides. AIM OF THE STUDY: The structures of polysaccharides from plants, have been reported contributing to multiple pharmacological activities such as anti-oxidative, anti-inflammatory, anti-tumor and liver protection. Therefore, the focus of this study was on its anti-oxidative and anti-inflammatory activities in vitro, which would be based on the various polysaccharides with distinct structures obtained from different parts of the A. sinensis root. MATERIALS AND METHODS: Four parts of A. sinensis root were separated according to the Chinese Pharmacopoeia: head, body, tail and whole body. Crude polysaccharides were obtained by water extraction and ethanol precipitation method, and were further fractionated by DEAE Sepharose chromatographic column and gel filtration. The comparison of ASPs from different root parts were performed, including chemical compositions determined by colorimetric analysis, monosaccharide compositions measured by high performance liquid chromatography (HPLC), glycosidic linkage units determined by methylation and gas chromatography-mass spectrometry (GC-MS), organic functional groups determined by FT-IR, molecular weight (Mw) demarcated by gel permeation chromatography, and the viscosities and solubilities were measured according to method published in the previous report with minor modification. In vitro biological activities of APSs were compared on lipopolysaccharide (LPS)-induced inflammatory and oxidative stress models on IPEC-J2 cells. RESULTS: Four purified polysaccharides, ASP-H-AP, ASP-B-AP, ASP-T-AP and ASP-Hb-AP from the root of A. sinensis, were obtained, and consisted of various contents of protein and the polyphenol. They were possibly pectic polysaccharides with a long homogalacturonan region as the main backbone and ramified with rhamnogalacturonan I region, but they were differed by subregions and the relative contents of glycosidic units. The Mw of four pectic polysaccharides were ranged from 67.9-267.7 kDa. The infrared spectrum also showed that the four polysaccharide fractions contained the characteristic peaks of polysaccharides. Their distinct primary structure could lead to a variety of biological activities. In vitro biological assays suggested that four polysaccharide fractions can protect IPEC-J2 cells against the LPS-induced inflammation by down-regulating inflammation factors and related genes on IPEC-J2 cells. These polysaccharides also could alleviate oxidative stress on IPEC-J2 cells by up-regulating the gene and protein expressions of antioxidant enzymes. It was concluded that ASP-H-AP possessed better anti-inflammatory and anti-oxidative effects, while those of ASP-T-AP was relatively poor among the four polysaccharide fractions. CONCLUSION: All results indicated that the structure of pectic polysaccharides from different root parts of A. sinensis differed, which lead to their distinct anti-inflammatory and anti-oxidative activities. This may also be one of the factors why different parts of A. sinensis showed various pharmacological activities and applied independently in traditional use. In addition, it would be valuable for further studies on structure-activity relationship of polysaccharides obtained by different root parts of A. sinensis.


Assuntos
Angelica sinensis , Angelica sinensis/química , Anti-Inflamatórios/farmacologia , Inflamação , Lipopolissacarídeos , Polissacarídeos/química , Polissacarídeos/farmacologia , Espectroscopia de Infravermelho com Transformada de Fourier , Água/química
8.
Bioengineered ; 13(1): 242-252, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34898379

RESUMO

Oxygen therapy and mechanical ventilation are widely used to treat and manage neonatal emergencies in critically ill newborns. However, they are often associated with adverse effects and result in conditions such as chronic lung disease and bronchopulmonary dysplasia. Hence, aclear understanding of the mechanisms underlying hyperoxia-induced lung damage is crucial in order to mitigate the side effects of oxygen-based therapy. Here, we have established an in vitro model of hyperoxia-induced lung damage in type II alveolar epithelial cells (AECIIs) and delineated the molecular basis of oxygen therapy-induced impaired alveolar development. Thus, AECIIs were exposed to a hyperoxic environment and their cell viability, cell cycle progression, apoptosis, mitochondrial integrity and dynamics, and energy metabolism were assessed. The results showed that hyperoxia has no significant effect as an inhibitor of SMAD3 and ERK1/2 in AECIIs, but leads to significant inhibition of cell viability. Further, hyperoxia was found to promote AECII apoptosis and mitochondrial, whereas chemical inhibition of SMAD3 or ERK1/2 further exacerbated the detrimental effects of hyperoxia in AECIIs. Overall, these findings presented herein demonstrate the critical role of SMAD/ERK signaling in the regulation of AECII behavior in varying oxygen environments. Thus, this study offers novel insights for the prevention of neonatal lung dysfunction in premature infants.


Assuntos
Lesão Pulmonar Aguda/metabolismo , Células Epiteliais Alveolares/citologia , Mitocôndrias/metabolismo , Proteína Smad3/metabolismo , Lesão Pulmonar Aguda/etiologia , Células Epiteliais Alveolares/metabolismo , Animais , Apoptose , Hipóxia Celular , Proliferação de Células , Metabolismo Energético , Sistema de Sinalização das MAP Quinases , Modelos Biológicos , Ratos
9.
Artigo em Inglês | MEDLINE | ID: mdl-36715065

RESUMO

Hexavalent chromium (Cr(VI)) compounds are environmental and occupational lung carcinogens. The present study followed the chronic effect of Cr(VI) on the neoplastic transformation of BEAS-2B lung bronchial epithelial cells with or without deletion of Gene 33 (Mig6, EFFRI1), a multifunctional adaptor protein. We find that Gene 33-deleted cells exhibit increased anchorage-independent growth compared to control cells after transformed by 8-week but not 24-week Cr(VI) exposure. Gene 33-deleted cells show a higher level of cell proliferation and are more resistant to acute Cr(VI) toxicity compared to control cells after transformed by 8-week but not 24-week Cr(VI) exposure, despite that 24-week-transformed cells have increased resistance to acute Cr(VI) toxicity. However, Gene 33-deleted cells show increased migration after transformed by both 8-week and 24-week Cr(VI) exposures. Furthermore, only cells transformed by 24 weeks of Cr(VI) exposure can form subcutaneous tumors in nude mice. Although no significant difference in the size of tumors formed by the two cell types, there is a marked difference in the histological manifestation and more MMP3 expression in tumors from Gene 33-deleted cells. Our results demonstrate progressive neoplastic transformation of BEAS-2B cells and the adaptation of these cells to Gene 33 deletion during chronic exposure to Cr(VI).


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Transformação Celular Neoplásica , Cromo , Animais , Humanos , Camundongos , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Cromo/toxicidade , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Camundongos Nus , Proteínas Adaptadoras de Transdução de Sinal/genética
10.
Cells ; 10(7)2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-34206547

RESUMO

Gene 33 (also named Mig6, RALT, and ERRFI1) is an adapter/scaffold protein with a calculated molecular weight of about 50 kD. It contains multiple domains known to mediate protein-protein interaction, suggesting that it has the potential to interact with many cellular partners and have multiple cellular functions. The research over the last two decades has confirmed that it indeed regulates multiple cell signaling pathways and is involved in many pathophysiological processes. Gene 33 has long been viewed as an exclusively cytosolic protein. However, recent evidence suggests that it also has nuclear and chromatin-associated functions. These new findings highlight a significantly broader functional spectrum of this protein. In this review, we will discuss the function and regulation of Gene 33, as well as its association with human pathophysiological conditions in light of the recent research progress on this protein.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Células/metabolismo , Doença/genética , Proteínas Adaptadoras de Transdução de Sinal/química , Movimento Celular/genética , Humanos , Neoplasias/genética , Neoplasias/patologia , Transdução de Sinais
11.
Front Cell Dev Biol ; 9: 646687, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33842469

RESUMO

The cellular response to hypoxia is a key biological process that facilitates adaptation of cells to oxygen deprivation (hypoxia). This process is critical for cancer cells to adapt to the hypoxic tumor microenvironment resulting from rapid tumor growth. Hypoxia-inducible factor 1 (HIF-1) is a transcription factor and a master regulator of the cellular response to hypoxia. The activity of HIF-1 is dictated primarily by its alpha subunit (HIF-1α), whose level and/or activity are largely regulated by an oxygen-dependent and ubiquitin/proteasome-mediated process. Prolyl hydroxylases (PHDs) and the E3 ubiquitin ligase Von Hippel-Lindau factor (VHL) catalyze hydroxylation and subsequent ubiquitin-dependent degradation of HIF-1α by the proteasome. Seven in Absentia Homolog 2 (SIAH2), a RING finger-containing E3 ubiquitin ligase, stabilizes HIF-1α by targeting PHDs for ubiquitin-mediated degradation by the proteasome. This SIAH2-HIF-1 signaling axis is important for maintaining the level of HIF-1α under both normoxic and hypoxic conditions. A number of protein kinases have been shown to phosphorylate SIAH2, thereby regulating its stability, activity, or substrate binding. In this review, we will discuss the regulation of the SIAH2-HIF-1 axis via phosphorylation of SIAH2 by these kinases and the potential implication of this regulation in cancer biology and cancer therapy.

12.
Int J Environ Health Res ; 31(7): 861-871, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31793343

RESUMO

ß-HgS, differing from environmental mercury pollutants (MeHgCl and HgCl2) in chemical form, is used as traditional medicine in Asian countries for thousands of years. In this study, Neuro-2a cells were exposed to ß-HgS, MeHgCl and HgCl2 (5 µM) for 6-24 h. The cell viability of ß-HgS was higher than MeHgCl with 25.9% and 72.4% in 12 h and 24 h respectively. As the incubation time increased, MeHgCl had obvious damage to cell morphology, decreased the ratio of Bcl-2 and Bak and increased the expressions of TNF-α, IL-6 and IL-1ß significantly. Furthermore, the expressions of IL-1ß and IL-6 in HgCl2 group were increased significantly in 6 h and 24 h. The apoptotic rates in MeHgCl and HgCl2 group were respectively higher than ß-HgS with 32.2% and 7.30% in 24 h. Our findings indicate that ß-HgS is much less neurotoxicity than MeHgCl and HgCl2 in Neuro-2a cells.


Assuntos
Poluentes Ambientais/toxicidade , Compostos de Mercúrio/toxicidade , Compostos de Metilmercúrio/toxicidade , Animais , Apoptose/efeitos dos fármacos , Caspases/genética , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Intoxicação do Sistema Nervoso por Mercúrio , Camundongos
13.
Stem Cell Reports ; 15(4): 968-982, 2020 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-33053361

RESUMO

Sertoli cells are the major component of the spermatogonial stem cell (SSC) niche; however, regulatory mechanisms in Sertoli cells that dictate SSC fate decisions remain largely unknown. Here we revealed features of the N6-methyladenosine (m6A) mRNA modification in Sertoli cells and demonstrated the functions of WTAP, the key subunit of the m6A methyltransferase complex in spermatogenesis. m6A-sequencing analysis identified 21,909 m6A sites from 15,365 putative m6A-enriched transcripts within 6,122 genes, including many Sertoli cell-specific genes. Conditional deletion of Wtap in Sertoli cells resulted in sterility and the progressive loss of the SSC population. RNA sequencing and ribosome nascent-chain complex-bound mRNA sequencing analyses suggested that alternative splicing events of transcripts encoding SSC niche factors were sharply altered and translation of these transcripts were severely dysregulated by Wtap deletion. Collectively, this study uncovers a novel regulatory mechanism of the SSC niche and provide insights into molecular interactions between stem cells and their cognate niches in mammals.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Fatores de Processamento de RNA/metabolismo , Células de Sertoli/citologia , Células de Sertoli/metabolismo , Espermatogônias/citologia , Nicho de Células-Tronco , Adenosina/análogos & derivados , Adenosina/metabolismo , Animais , Diferenciação Celular/genética , Proliferação de Células/genética , Autorrenovação Celular/genética , Deleção de Genes , Regulação da Expressão Gênica no Desenvolvimento , Infertilidade Masculina/patologia , Masculino , Camundongos Knockout , Biossíntese de Proteínas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Espermatogônias/metabolismo , Nicho de Células-Tronco/genética , Transcrição Gênica
14.
Metallomics ; 12(9): 1389-1399, 2020 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-32638798

RESUMO

Traditional Tibetan medicines containing ß-HgS have been used to treat chronic ailments for thousands of years. However, there has recently been speculation regarding the safety of these medicines due to their high mercury content. Although the toxic effect of ß-HgS has been previously investigated in vivo, the mechanism underlying the toxicity of this compound remains unclear. In this study, we investigate the mechanism of ß-HgS cytotoxicity via experiments performed on rat adrenal gland tumor cells (PC-12). Specifically, we analyze the viability and intracellular oxidative stress state of PC-12 cells treated with varying concentrations of ß-HgS. For comparison purposes, the effects of MeHgCl and HgCl2, two Hg-based compounds, on ROS generation and MDA, GSH/GSSG, Nrf2, NQO-1, and HO-1 levels are also determined. It should be noted that we used the small-molecule thiols of cell culture medium, such as cysteine, to increase the solubility of ß-HgS and prepare a ß-HgS solution to treat PC-12 cells. The obtained results show that ß-HgS inhibits cell viability at concentrations of 200-1000 ng Hg mL-1 (48 h treatment). In the concentration range of 200-600 ng Hg mL-1 (24 h treatment), the inhibitory effect of ß-HgS is stronger than that of MeHgCl; however, this trend is reversed at higher concentrations (800-1000 ng mL-1) and longer exposure times (48 h). Moreover, ß-HgS significantly promotes MDA, but has no appreciable influence on cell apoptosis and ROS generation in PC-12 cells, which suggests that its inhibitory effect on cell viability might be related to the stimulation of ROS-independent oxidative stress. Notably, ß-HgS and HgCl2 significantly increase the GSH content, GSH/GSSG ratio, NQO-1 mRNA expression, and HO-1 protein expression in PC-12 cells, indicating that the antioxidant protection against these compounds is triggered by Nrf2 activation. HPLC-AFS analysis shows that in ß-HgS and HgCl2 solutions, mercury exists in the same form of Hg2+, but the cytotoxicity of the former is greater. This is probably due to the additional oxidative damage induced by the S2- ion in ß-HgS. In conclusion, ß-HgS induces ROS-independent oxidative stress in PC-12 cells, and thus, is obviously cytotoxic. At the same time, it promotes the antioxidant capacity of cells by activating the Nrf2 pathway.


Assuntos
Sobrevivência Celular/efeitos dos fármacos , Citotoxinas/toxicidade , Cloreto de Mercúrio/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Animais , Células PC12 , Ratos
15.
Cell Death Dis ; 10(10): 742, 2019 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-31582735

RESUMO

Pigment epithelium-derived factor (PEDF), a classic angiogenic inhibitor, has been reported to function as a tumor suppression protein and to downregulate in many types of solid tumors. However, the expression level of PEDF and its role in hepatocellular carcinoma (HCC) are contradictory. The present study investigates the expression and different activities of secreted and intracellular PEDF during HCC development, as well as the underlying mechanism of PEDF on HCC lipid disorders. We found that PEDF had no association with patients' prognosis, although PEDF was highly expressed and inhibited angiogenesis in HCC tumor tissues. The animal experiments indicated that full-length PEDF exhibited equalizing effects on tumor growth activation and tumor angiogenesis inhibition in the late stage of HCC progression. Importantly, the pro-tumor activity was mediated by the intracellular PEDF, which causes accumulation of free fatty acids (FFAs) in vivo and in vitro. Based on the correlation analysis of PEDF and lipid metabolic indexes in human HCC tissues, we demonstrated that the intracellular PEDF led to the accumulation of FFA and eventually promoted HCC cell growth by inhibiting the activation of AMPK via ubiquitin-proteasome-mediated degradation, which causes increased de novo fatty acid synthesis and decreased FFA oxidation. Our findings revealed why elevated PEDF did not improve the patients' prognosis as the offsetting intracellular and extracellular activities. This study will lead to a comprehensive understanding of the diverse role of PEDF in HCC and provide a new selective strategy by supplement of extracellular PEDF and downregulation of intracellular PEDF for the prevention and treatment of liver cancer.


Assuntos
Carcinoma Hepatocelular/metabolismo , Espaço Extracelular/metabolismo , Proteínas do Olho/metabolismo , Espaço Intracelular/metabolismo , Neoplasias Hepáticas/metabolismo , Fatores de Crescimento Neural/metabolismo , Serpinas/metabolismo , Adenilato Quinase/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Proliferação de Células/genética , Proteínas do Olho/genética , Ácidos Graxos/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Metabolismo dos Lipídeos/genética , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Masculino , Camundongos Endogâmicos BALB C , Camundongos Nus , Pessoa de Meia-Idade , Modelos Biológicos , Estadiamento de Neoplasias , Fatores de Crescimento Neural/genética , Prognóstico , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise , Serpinas/genética , Ubiquitina/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
16.
Toxicol Appl Pharmacol ; 362: 59-66, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30352208

RESUMO

Methylmercury (MeHg+) is an extremely toxic organomercury cation that can induce severe neurological damage. Once it enters the body, methylmercury binds to amino acids or proteins containing free sulfhydryl groups. In particular, methylmercury is known to bind with human serum albumin (HSA) in human plasma; however, the effects of methylmercury-HSA conjugate (MeHg-HSA) on the central nervous system (CNS) are not fully understood. In the present study, we used the microglial cell line N9 as the target cells to evaluate the effect of MeHg-HSA on physiological function of the CNS preliminarily. The various factors in the cell culture were monitored by MTT assay, total lactate dehydrogenase assay, ELISA, qPCR, Western blot and flow cytometry techniques. The results showed that low-dose treatment with MeHg-HSA activated N9 cells, promoting cell proliferation and total cell number, enhancing NO and intracellular Ca2+ levels, and suppressing the release of TNFα and IL1ß without cytotoxic effects; while high-dose MeHg-HSA exhibited cytotoxic effects on N9 cells, including promoting cell death and increasing the secretion of TNFα and IL1ß. These results indicate that MeHg-HSA causes hormesis in microglia N9 cells. Furthermore, ERK/MAPKs and STAT3 signaling pathways related to the hormesis of MeHg-HSA on N9 cells. In addition, low dose of MeHg-HSA might be viewed as something very close to a lowest observed adverse effect level (LOAEL) for N9 cells. These findings will be useful for investigating the hormesis mechanism of MeHg+ and exploring the specific functions of MeHg-sulfhydryl conjugates on the central nervous system.


Assuntos
Compostos de Metilmercúrio/farmacologia , Microglia/efeitos dos fármacos , Albumina Sérica Humana/farmacologia , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Hormese/efeitos dos fármacos , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Compostos de Metilmercúrio/química , Camundongos , Microglia/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Óxido Nítrico/metabolismo , Fator de Transcrição STAT3/metabolismo , Albumina Sérica Humana/química , Transdução de Sinais/efeitos dos fármacos , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
17.
Exp Cell Res ; 367(1): 89-96, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29577897

RESUMO

Tristetraprolin (TTP) is the most well-known member of RNA-binding zinc-finger protein that play a significant role in accelerating mRNA decay. Increasingly studies have reported that TTP was functioned as a tumor suppressor gene in several types of carcinomas, while its underlying mechanism is not clear yet. In the current study, we found that TTP overexpression decreased cell proliferation and increased cell death in lung adenocarcinoma cells, with the cell cycle arrest at the S phase. Remarkably, instead of inducing cell apoptosis directly, TTP overexpression alters cell autophagy. Our studies demonstrate that TTP overexpression has no effect on apoptosis related genes, but decreases the expression of autophagy-related genes, including Beclin 1 and LC3II. The level of autophagy flux assessed by infection with the mGFP-RFP-LC3 adenovirus construction has been blocked by TTP overexpression. Moreover, the autophagic vacuoles number detected by transmission electron microscopy decreased with TTP expression up-regulation. Our results indicate, for the first time, that TTP suppresses cell proliferation and increases cell death through cell autophagy pathway in lung cancer cells. Our study provides a new angle of view for TTP function as a tumor suppressor which could be targeted in tumor treatment.


Assuntos
Adenocarcinoma de Pulmão/patologia , Autofagia , Neoplasias Pulmonares/patologia , Proteínas de Ligação a RNA/metabolismo , Tristetraprolina/metabolismo , Células A549 , Adenocarcinoma de Pulmão/metabolismo , Apoptose , Ciclo Celular , Linhagem Celular , Proliferação de Células , DNA Complementar/genética , DNA Complementar/metabolismo , Humanos , Neoplasias Pulmonares/metabolismo , RNA/genética , RNA/metabolismo , Proteínas de Ligação a RNA/genética , Tristetraprolina/genética , Dedos de Zinco
18.
Biol Trace Elem Res ; 185(2): 509-512, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29376203

RESUMO

Mercury sulfide is an insoluble inorganic mercury compound, and it is the main chemical form in traditional oral mercury-containing medicines. Hg2+ has a high affinity for thiols, and small molecule thiols in the gastrointestinal tract may promote mercury dissolution of mercury sulfide by binding to Hg2+. L-cysteine is the only amino acid that possesses a reducing sulfhydryl group (-SH), out of the 20 amino acids. This study investigates the effect of L-cysteine on mercury dissolution of mercury sulfide at pHs ranging from 1.2 to 7.2. The results showed that L-cysteine had different pH-dependent effects on the mercury dissolution of α-HgS and ß-HgS. For α-HgS, the dissolved mercury concentration increased from 5.47 ± 0.97 ng/mL to 12.49 ± 0.54 ng/mL when the pH rose from 1.2 to 4.2, and decreased to 3.37 ± 0.70 ng/mL at pH 6.0 and then increased to 9.36 ± 0.79 ng/mL at pH 7.2. For ß-HgS, the dissolved mercury concentration increased from 151.09 ± 2.25 ng/mL to 2346.71 ± 62.62 ng/mL when the pH increased from 1.2 to 7.2. In conclusion, L-Cys was distinctly enhanced upon mercury dissolution of α-HgS and ß-HgS with increasing pH. These results may contribute to our understanding of the mercury absorption mechanism of traditional oral mercury-containing medicines.


Assuntos
Cisteína/química , Compostos de Mercúrio/química , Mercúrio/análise , Mercúrio/química , Sulfetos/química , Concentração de Íons de Hidrogênio , Solubilidade
19.
Int J Biol Macromol ; 112: 101-109, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29374531

RESUMO

Air pollution is a serious global health problem nowadays. So, it is an emergency to pay sufficient attention to treat and prevent the diseases caused by air pollution, especially respiratory disease and lung damage. Cladina rangiferina (L.) Nyl. is an edible lichen that has been used in medicinal diets to treat respiratory and other diseases for over 500 years. In this study, a water-soluble polysaccharide, CRWP-P, was obtained from C. rangiferina by hot-water extraction, freeze-thawing separation, and Fehling reagent purification. Structural analysis showed that CRWP-P is a linear α-(1 → 3),(1 → 4)-d-glucan without branches. Its Mw was determined to be 1.05 × 105 Da. Its (1,3)-α-d-glucopyranosyl: (1,4)-α-d-glucopyranosyl ratio is approximately 1:2. Antioxidant activity assay showed that C. rangiferina polysaccharides, especially CRWP-P, had appreciable DPPH radical-scavenging activity and reducing power. Notably, they could effectively decrease cell breakdown and ROS generation, inhibit lipid peroxidation, increase key antioxidase activity, and promote glutathione redox cycling in Pb2+-oxidative injured A549 alveolar epithelium cells. Overall, the results of this study indicated that C. rangiferina polysaccharides, especially CRWP-P, have the potential to be natural antioxidants for the treatment of lung oxidative damage induced by lead of air pollutants.


Assuntos
Células Epiteliais Alveolares/efeitos dos fármacos , Antioxidantes/farmacologia , Glucanos/farmacologia , Polissacarídeos/farmacologia , Células A549 , Antioxidantes/química , Ascomicetos/química , Glucanos/química , Glutationa/metabolismo , Humanos , Chumbo/toxicidade , Peroxidação de Lipídeos/efeitos dos fármacos , Pulmão/efeitos dos fármacos , Pulmão/patologia , Oxirredução , Estresse Oxidativo/efeitos dos fármacos , Polissacarídeos/química
20.
Biol Trace Elem Res ; 184(2): 536-545, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29130128

RESUMO

Zuotai, also named as "gTso thal", a known Tibetan medicinal mixture containing insoluble cubic crystal mercuric sulfide (ß-HgS), has been used to treat diseases with long history. The mercury release ratio from Zuotai in gastrointestinal environment is one determinant factor for its bioavailability and biological effect. However, the information is still scarce now. Therefore, the study was designed to investigate the effect of sulfhydryl biomolecules [L-cysteine (Cys) and glutathione (GSH)] and pH on mercury dissociation from Zuotai, ß-HgS, and hexagonal crystal mercuric sulfide (α-HgS) in artificial gastrointestinal juices or pure water with a 1:100 solid-liquid ratio. And, the digestion and peristalsis of gastrointestinal tract were simulated in vitro. The results showed the following trend for the mercury release ratio of Zuotai, artificial gastric juice > artificial intestinal juice > pure water, whereas the trend for ß-HgS and α-HgS was as follows, artificial intestinal fluid > artificial gastric fluid > pure water. The mercury release ratios of Zuotai, ß-HgS, and α-HgS significantly increased in artificial intestinal juice containing L-Cys or GSH compared to those without sulfhydryl biomolecules in the juice. However, in contrast to the results observed for ß-HgS and α-HgS, the mercury release ratio of Zuotai was reduced remarkably in pure water and artificial gastric juice with Cys or GSH. And, we found that strong acidic or strong alkaline environments promoted the dissociation of mercury from Zuotai, ß-HgS, and α-HgS. Taken together, current findings may contribute to other studies regarding clinical safety and bioavailability of the traditional drug Zuotai containing ß-HgS.


Assuntos
Cisteína/farmacologia , Liberação Controlada de Fármacos/efeitos dos fármacos , Glutationa/farmacologia , Compostos de Mercúrio/farmacocinética , Mercúrio/farmacocinética , Disponibilidade Biológica , Suco Gástrico/química , Suco Gástrico/metabolismo , Trato Gastrointestinal/metabolismo , Concentração de Íons de Hidrogênio , Medicina Tradicional Tibetana , Mercúrio/química , Mercúrio/metabolismo , Compostos de Mercúrio/química , Compostos de Mercúrio/metabolismo , Água/química , Água/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA