Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Cell Mol Med ; 28(10): e18379, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38752750

RESUMO

Gastric cancer is a prevalent and deadly malignancy, and the response to immunotherapy varies among patients. This study aimed to develop a prognostic model for gastric cancer patients and investigate immune escape mechanisms using deep machine learning and single-cell sequencing analysis. Data from public databases were analysed, and a prediction model was constructed using 101 algorithms. The high-AIDPS group, characterized by increased AIDPS expression, exhibited worse survival, genomic variations and immune cell infiltration. These patients also showed immunotherapy tolerance. Treatment strategies targeting the high-AIDPS group identified three potential drugs. Additionally, distinct cluster groups and upregulated AIDPS-associated genes were observed in gastric adenocarcinoma cell lines. Inhibition of GHRL expression suppressed cancer cell activity, inhibited M2 polarization in macrophages and reduced invasiveness. Overall, AIDPS plays a critical role in gastric cancer prognosis, genomic variations, immune cell infiltration and immunotherapy response, and targeting GHRL expression holds promise for personalized treatment. These findings contribute to improved clinical management in gastric cancer.


Assuntos
Algoritmos , Regulação Neoplásica da Expressão Gênica , Análise de Célula Única , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/genética , Neoplasias Gástricas/imunologia , Neoplasias Gástricas/patologia , Análise de Célula Única/métodos , Prognóstico , Evasão Tumoral/genética , Linhagem Celular Tumoral , Imunoterapia/métodos , Biomarcadores Tumorais/genética , Aprendizado de Máquina
2.
J Nanobiotechnology ; 22(1): 23, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38191434

RESUMO

BACKGROUND: Viral diseases continue to pose a major threat to the world's commercial crops. The in-depth exploration and efficient utilization of resistance proteins have become crucial strategies for their control. However, current delivery methods for introducing foreign DNA suffer from host range limitations, low transformation efficiencies, tissue damage, or unavoidable DNA integration into the host genome. The nanocarriers provides a convenient channel for the DNA delivery and functional utilization of disease-resistant proteins. RESULTS: In this research, we identified a cysteine-rich venom protein (NbCRVP) in Nicotiana benthamiana for the first time. Virus-induced gene silencing and transient overexpression clarified that NbCRVP could inhibit the infection of tobacco mosaic virus, potato virus Y, and cucumber mosaic virus, making it a broad-spectrum antiviral protein. Yeast two-hybrid assay, co-immunoprecipitation, and bimolecular fluorescence complementation revealed that calcium-dependent lipid-binding (CaLB domain) family protein (NbCalB) interacted with NbCRVP to assist NbCRVP playing a stronger antiviral effect. Here, we demonstrated for the first time the efficient co-delivery of DNA expressing NbCRVP and NbCalB into plants using poly(amidoamine) (PAMAM) nanocarriers, achieving stronger broad-spectrum antiviral effects. CONCLUSIONS: Our work presents a tool for species-independent transfer of two interacting protein DNA into plant cells in a specific ratio for enhanced antiviral effect without transgenic integration, which further demonstrated new strategies for nanocarrier-mediated DNA delivery of disease-resistant proteins.


Assuntos
Nicotiana , Vírus de RNA , Nicotiana/genética , Cálcio , DNA , Antivirais/farmacologia
3.
ACS Appl Mater Interfaces ; 15(24): 29052-29063, 2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37279020

RESUMO

Most crop viruses are carried and spread by seeds. Virus-infected seeds are seed-borne viral disease infections, and thus, reducing the rate of seed infection is an urgent problem in the seed-production industry. The objective of this study was to use nanoparticles (NPs) to directly deliver dsRNA into plants or pollen to initiate RNA interference (RNAi) to reduce viral carryover in seeds. Chitosan quaternary ammonium salt (HACC), complexed with dsRNAs, was selected for targeting the genes for the tobacco mosaic virus (TMV) coat protein (CP) and TMV RNA-dependent RNA polymerase (RdRP) to form HACC-dsRNA NPs. These NP-based dsRNAs were delivered to the plants using four different methods, including infiltration, spraying, root soaking, and pollen internalization. All four methods were able to reduce the seed-carrying rate of offspring seeds of the TMV-infected plants, with pollen internalization being the most effective in reducing the TMV-carrying rate from 95.1 to 61.1% in the control group. By measuring the plant uptake of fluorescence-labeled NPs and dsRNAs, the transportation of the HACC-dsRNA NPs into the plants was observed, and the uptake of dsRNA in combination with small RNA sequencing was further confirmed, resulting in the silencing of homologous RNA molecules during the topical application. The results demonstrated that the incidence of TMV infection was reduced by various degrees via RNAi induction without the need to develop transgenic plants. These results demonstrate the advantages of NP-based RNAi technology in breeding for disease resistance and developing a new strategy for virus-resistant breeding in plants.


Assuntos
Vírus do Mosaico do Tabaco , Vírus do Mosaico do Tabaco/genética , Nicotiana/genética , RNA de Cadeia Dupla , Sementes , Pólen
5.
Front Genet ; 14: 1290466, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38259624

RESUMO

Potato virus Y (PVY) disease is a global problem that causes significant damage to crop quality and yield. As traditional chemical control methods are ineffective against PVY, it is crucial to explore new control strategies. MicroRNAs (miRNAs) play a crucial role in plant and animal defense responses to biotic and abiotic stresses. These endogenous miRNAs act as a link between antiviral gene pathways and host immunity. Several miRNAs target plant immune genes and are involved in the virus infection process. In this study, we conducted small RNA sequencing and transcriptome sequencing on healthy and PVY-infected N. benthamiana tissues (roots, stems, and leaves). Through bioinformatics analysis, we predicted potential targets of differentially expressed miRNAs using the N. benthamiana reference genome and the PVY genome. We then compared the identified differentially expressed mRNAs with the predicted target genes to uncover the complex relationships between miRNAs and their targets. This study successfully constructed a miRNA-mRNA network through the joint analysis of Small RNA sequencing and transcriptome sequencing, which unveiled potential miRNA targets and identified potential binding sites of miRNAs on the PVY genome. This miRNA-mRNA regulatory network suggests the involvement of miRNAs in the virus infection process.

6.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 36(2): 249-52, 2005 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-15807280

RESUMO

OBJECTIVE: Comparing the genotoxicity of gasoline-fueled vehicle exhaust (gasoline exhaust for short) with that of methanol-fueled vehicle exhaust (methanol exhaust for short) so as to provide a scientific basis for replacement of gasoline by methanol as fuel in vehicle. METHODS: The MTT method was used first to evaluate the cytotoxicity of the two kinds of vehicle exhausts, and the concentration that had no obvious cytotoxicity would be used as the highest dose in the experiments. The A549 cells micronucleus test and single cell gel electrophoresis (SCGE) assay (comet assay) in vitro were applied to compare the genotoxicity of gasoline exhaust and methanol exhaust. RESULTS: The MTT results showed that the gasoline-fueled vehicle exhaust exerted stronger cytotoxicity to A549 cells in both 2 h and 24 h exposure times, compared with the methanol exhaust. In A549 cells micronucleus test in vitro, at doses 0.025, 0.05, 0.1 and 0.2 L/ml, the micronucleated cell (MNC) rates were 2.65%, 4.35%, 4.95% and 5.85% respectively, which were higher than those (1.30% and 1.35%) of controls (P<0.01). For the methanol-fueled vehicle exhaust, there was no significant difference in the rate of A549 cells micronucleus between the test groups and control group. In the comet assay, gasoline-fueled vehicle exhaust could induce A549 cells DNA damage. The rate of caudate cell and the length of DNA migration increased with the escalation of dosing level. However, the methanol-fueled vehicle exhaust did not show any DNA damage to A549 cells. CONCLUSION: The results demanstrate that gasoline-fueled vehicle exhaust can induce DNA and chromosome damage, it has a distinct genotoxicity, whereas the methanol-fueled vehicle exhaust does not show any potential genotoxicity in both tests.


Assuntos
Dano ao DNA/efeitos dos fármacos , Células Epiteliais/citologia , Gasolina/toxicidade , Metanol/toxicidade , Emissões de Veículos/toxicidade , Humanos , Pulmão/citologia , Testes para Micronúcleos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA