Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Neural Regen Res ; 20(5): 1277-1292, 2025 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-39075894

RESUMO

The primary mechanism of secondary injury after cerebral ischemia may be the brain inflammation that emerges after an ischemic stroke, which promotes neuronal death and inhibits nerve tissue regeneration. As the first immune cells to be activated after an ischemic stroke, microglia play an important immunomodulatory role in the progression of the condition. After an ischemic stroke, peripheral blood immune cells (mainly T cells) are recruited to the central nervous system by chemokines secreted by immune cells in the brain, where they interact with central nervous system cells (mainly microglia) to trigger a secondary neuroimmune response. This review summarizes the interactions between T cells and microglia in the immune-inflammatory processes of ischemic stroke. We found that, during ischemic stroke, T cells and microglia demonstrate a more pronounced synergistic effect. Th1, Th17, and M1 microglia can co-secrete pro-inflammatory factors, such as interferon-γ, tumor necrosis factor-α, and interleukin-1ß, to promote neuroinflammation and exacerbate brain injury. Th2, Treg, and M2 microglia jointly secrete anti-inflammatory factors, such as interleukin-4, interleukin-10, and transforming growth factor-ß, to inhibit the progression of neuroinflammation, as well as growth factors such as brain-derived neurotrophic factor to promote nerve regeneration and repair brain injury. Immune interactions between microglia and T cells influence the direction of the subsequent neuroinflammation, which in turn determines the prognosis of ischemic stroke patients. Clinical trials have been conducted on the ways to modulate the interactions between T cells and microglia toward anti-inflammatory communication using the immunosuppressant fingolimod or overdosing with Treg cells to promote neural tissue repair and reduce the damage caused by ischemic stroke. However, such studies have been relatively infrequent, and clinical experience is still insufficient. In summary, in ischemic stroke, T cell subsets and activated microglia act synergistically to regulate inflammatory progression, mainly by secreting inflammatory factors. In the future, a key research direction for ischemic stroke treatment could be rooted in the enhancement of anti-inflammatory factor secretion by promoting the generation of Th2 and Treg cells, along with the activation of M2-type microglia. These approaches may alleviate neuroinflammation and facilitate the repair of neural tissues.

2.
Oxid Med Cell Longev ; 2020: 1201624, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33101581

RESUMO

Ischemic stroke (IS) can disrupt various types of brain cells in the neurovascular unit (NVU) at both the structural and functional levels. Therefore, NVU is considered to be a more comprehensive target for the treatment of IS. It is necessary to develop drugs which targeted multiple mechanisms and cell types on NVU against IS. As a component of bile acid, cholic acid has been reported to be able to diffuse across phospholipid bilayers and further cross the blood-brain barrier (BBB). However, the effects exerted by cholic acid (CA) on the NVU after stroke remain unclear. Based on our previous research, we established and further supplemented the characteristics of the functional in vitro NVU model and its oxygen-glucose deprivation and reoxygenation (OGD/R) model. Then, we investigated the effect of CA on the maintenance of the in vitro NVU after OGD/R and further discussed the specific molecular targets that CA played a role in. For the first time, we found that CA significantly maintained BBB integrity, downregulated apoptosis, and mitigated oxidative stress and inflammation damage after OGD/R. Meanwhile, CA obviously increased the levels of brain-derived neurotrophic factor (BDNF), which were mainly secreted from astrocytes, in the coculture system after OGD/R. The results demonstrated that CA significantly increased the expression of TrkB, PI3K/Akt, MAPK/Erk, and CREB in neurons. These positive effects on the downstream proteins of BDNF were suppressed by treatment with ANA12 which is an inhibitor of TrkB. In conclusion, the present study demonstrates that CA exerted multiple protective effects on the NVU, mediated by increasing the release of BDNF and further stimulating the BDNF-TrkB-PI3K/Akt and BDNF-TrkB-MAPK/Erk signaling pathways in the context of OGD/R-induced injury. These findings indicate that CA possesses the effect of antagonizing multiple mechanisms of IS and protecting multiple cell types in NVU and may be useful as a treatment for IS.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Ácido Cólico/farmacologia , Fármacos Neuroprotetores/farmacologia , Receptor trkB/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Astrócitos/citologia , Astrócitos/metabolismo , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Fator Neurotrófico Derivado do Encéfalo/genética , Hipóxia Celular , Células Cultivadas , Glucose/metabolismo , Glucose/farmacologia , Neurônios/citologia , Neurônios/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Sprague-Dawley , Receptor trkB/antagonistas & inibidores
3.
Front Pharmacol ; 11: 519, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32457601

RESUMO

Stroke is the second leading cause of death after heart disease globally and cerebral ischemic stroke accounts for approximately 70% of all incident stroke cases. We selected four main compounds from a patent Chinese medicine, Qingkailing (QKL) injection, including baicalin from Scutellaria baicalensis Georgi (Huang Qin), geniposide from Gardenia jasminoides J. Ellis (Zhizi), and cholic acid and hyodeoxycholic acid from Bovis Calculus (Niuhuang) with a ratio of 4.4:0.4:3:2.6 m/m, to develop a more efficacious and safer modern Chinese medicine injection against ischemic stroke, refined QKL (RQKL). In this study, we investigated multiple targets, levels, and pathways of RQKL by using an integrative pharm\acology combining experimental validation approach. In silica study showed that RQKL may regulate PI3K-Akt, estrogen, neurotrophin, HIF-1, MAPK, Hippo, FoxO, TGF-beta, NOD-like receptor, apoptosis, NF-kappa B, Wnt, chemokine, TNF, Toll-like receptor signaling pathways against ischemic stroke. The experimental results showed that RQKL improved neurological function and prevented infract volume and blood-brain-barrier damage. RQKL inhibited microgliosis and astrogliosis, and protected neurons from ischemic/reperfusion injury. RQKL also inhibited cell apoptosis and affecting the ratio of the anti-apoptosis protein B-cell lymphoma-2 (Bcl2) and pro-apoptosis protein Bcl2-associated X protein (Bax). Western blot analysis showed that RQKL activated AKT/PI3K signaling pathway and antibody array showed RQKL inhibited inflammatory response and decreased proinflammatory factor Tnf, Il6, and Il1b, and chemokines Ccl2, Cxcl2, and Cxcl3, and increased anti-inflammatory cytokine Il10. In conclusion, RQKL protected tissue against ischemic stroke through multiple-target, multiple signals, and modulating multiple cell-types in brain. This study not only promoted our understanding of the role of RQKL against ischemic stroke, but also provided a pattern for the study of Chinese medicine combining pharmaceutical Informatics and system biology methods.

4.
Neural Regen Res ; 14(11): 1941-1949, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31290452

RESUMO

Calculus bovis is commonly used for the treatment of stroke in traditional Chinese medicine. Hyodeoxycholic acid (HDCA) is a bioactive compound extracted from calculus bovis. When combined with cholic acid, baicalin and jas-minoidin, HDCA prevents hypoxia-reoxygenation-induced brain injury by suppressing endoplasmic reticulum stress-mediated apoptotic signaling. However, the effects of HDCA in ischemic stroke injury have not yet been studied. Neurovascular unit (NVU) dysfunction occurs in ischemic stroke. Therefore, in this study, we investigated the effects of HDCA on the NVU under ischemic conditions in vitro. We co-cultured primary brain microvascular endothelial cells, neurons and astrocytes using a transwell chamber co-culture system. The NVU was pre-treated with 10.16 or 2.54 µg/mL HDCA for 24 hours before exposure to oxygen-glucose deprivation for 1 hour. The cell counting kit-8 assay was used to detect cell activity. Flow cytometry and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling were used to assess apoptosis. Enzyme-linked immunosorbent assay was used to measure the expression levels of inflammatory cytokines, including interleukin-1ß, interleukin-6 and tumor necrosis factor-α, and neurotrophic factors, including brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor. Oxidative stress-related factors, such as superoxide dismutase, nitric oxide, malondialdehyde and γ-glutamyltransferase, were measured using kits. Pretreatment with HDCA significantly decreased blood-brain barrier permeability and neuronal apoptosis, significantly increased transendothelial electrical resistance and γ-glutamyltransferase activity, attenuated oxidative stress damage and the release of inflammatory cytokines, and increased brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor expression. Our findings suggest that HDCA maintains NVU morphological integrity and function by modulating inflammation, oxidation stress, apoptosis, and the expression of neurotrophic factors. Therefore, HDCA may have therapeutic potential in the clinical management of ischemic stroke. This study was approved by the Ethics Committee of Experimental Animals of Beijing University of Chinese Medicine (approval No. BUCM-3-2016040201-2003) in April 2016.

5.
Artigo em Inglês | MEDLINE | ID: mdl-30891079

RESUMO

Liver cancer is the fourth leading cause of cancer death worldwide, and hepatocellular carcinoma (HCC) accounts for the greatest proportion of these deaths. Baicalein, a flavonoid isolated from the root of Scutellariae radix, is considered a potential candidate to treat HCC. However, the underlying molecular mechanisms remain poorly understood. In the present study, a network pharmacological approach was combined with microarray data (GSE95504) acquired from the Gene Expression Omnibus database to reveal the therapeutic mechanisms of action of baicalein at a systemic level. We identified 38 baicalein targets and 76 differently expressed genes (DEGs) following treatment with baicalein, including 55 upregulated and 21 downregulated genes. The DEGs were significantly enriched in the biological functions of apoptosis, endoplasmic reticulum stress, and PERK-mediated unfolded protein response. Protein-protein interaction (PPI) network construction and topological screening revealed a core module of PPIs including two baicalein targets, TP53 and CDK1, and two downregulated DEGs, HSPA1A and HSPA1B. Expression and survival data for these genes in the module derived from Gene Expression Profiling Interactive Analysis (GEPIA) were subjected to Kaplan-Meier analysis of overall survival and disease-free survival. Overexpression of CDK1, BRCA1, TUBB, HSPA1A, HSPA1B, and HSPA4 was associated with significantly worse overall survival, while overexpression of CDK1, CLU7, BRCA1, and TUBB was associated with significantly worse disease-free survival. These data suggest that baicalein exerts therapeutic effects against HCC via a PPI network involving TP53, CDK1, HSPA1A, and HSPA1B.

6.
BMC Complement Altern Med ; 17(1): 203, 2017 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-28388904

RESUMO

BACKGROUND: Nonalcoholic fatty liver disease (NAFLD) represents one of the most common forms of liver disease worldwide, and it is always regarded as a consequence of a sedentary, food-abundant lifestyle, sitting for an extended time, and a low physical activity level, which often coincide with chronic and long-lasting psychological stress. A Chinese medicine Sinisan (SNS) may be a potential formula for treating this kind of disease. METHODS: In this study, a long-term chronic restraint stress protocol was used to investigate the mechanism underlying stress-induced NALFD. To investigate the effect of SNS treatment on stress-induced NAFLD, we measured the liver and serum values of total cholesterol (TC), triglyceride (TG), liver free fatty acids (FFA), low-density lipoprotein, superoxide dismutase, tumor necrosis factor-α, malondialdehyde, interleukin (IL)-6, and serum values of aspartate aminotransferase (AST), alanine aminotransferase (ALT), and alkaline phosphatase. Results are shown as a mean ± standard deviation. Significant differences between the groups were evaluated using the Student t-test. For multiple comparisons, one-way analysis of variance (ANOVA) was used. If the results of ANOVA indicated significant differences, post hoc analysis was performed with the Tukey test or Dunnett test, and p < 0.05 was considered statistically significant. RESULTS: Long-term chronic stress led to steatosis and non-alcoholic steatohepatitis. Additionally, SNS treatment significantly increased body weight gain (p < 0.01) and sucrose preference (p < 0.001), and it reduced the liver values of TC, TG, and FFA (p < 0.05). SNS also reduced the serum values of AST and ALT (p < 0.001), and the liver value of IL-6 (p < 0.01). CONCLUSIONS: This study's results demonstrate that psychological stress may be a significant risk factor of NAFLD. Furthermore, the traditional Chinese medicine formula SNS may have some beneficial effect in antagonizing psychological stress and stress-related NAFLD.


Assuntos
Medicamentos de Ervas Chinesas/administração & dosagem , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Alanina Transaminase/metabolismo , Animais , Colesterol/metabolismo , Modelos Animais de Doenças , Composição de Medicamentos , Medicamentos de Ervas Chinesas/química , Humanos , Interleucina-6/metabolismo , Masculino , Malondialdeído/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/psicologia , Ratos , Ratos Sprague-Dawley , Estresse Psicológico , Superóxido Dismutase/metabolismo , Triglicerídeos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA