Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
Heliyon ; 10(8): e29404, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38660245

RESUMO

Lung cancer ranks among the primary contributors to cancer-related fatalities on a global scale. Multiple research investigations have demonstrated that there exists a dysbiosis within the intestinal bacteria and short-chain fatty acids (SCFAs) is linked with immune responses in lung cancer. Qingfei mixture (QFM) has been widely used in treating lung cancer, yet the active ingredients and roles of the QFM on immune responses by targeting gut microbiota remain to be elucidated. The chemical constituents of QFM were qualitatively examined by UPLC/Q-TOF-MS. Additionally, we evaluated the therapeutic impact of the organic substance QFM on lung cancer, aiming to elucidate its mechanisms for improving the tumor-immune microenvironment. Herein, we constructed a Lewis lung carcinoma (LLC)-bearing mice model with QFM treatment to observe tumor growth and immune cell changes. Then, the feces were collected and a combinatory study using metagenomes, non-targeted metabonomics, and targeted metabonomics of SCFAs was performed. In vitro experiments have been conducted to estimate the roles of acetate and sodium propionate in CD8+ T cells. Furthermore, we treated tumor-bearing mice with QFM, QFM + MHY1485 (an mTOR activator), and QFM + an antibiotic mixture (ABX) to explore the potential therapeutic benefit of regulation of the tumor microenvironment. A total of 96 compounds were obtained from QFM by UPLC/Q-TOF-MS. Besides, the findings demonstrated that QFM exhibited significant efficacy against lung cancer, manifesting in reduced tumor growth and improved immune responses. In investigating its mechanisms, we integrated gut microbiota sequencing and fecal metabolomics, revealing that QFM effectively restored disruptions in gut microbiota and SCFAs in mice with lung cancer. QFM, acetate, or sodium propionate contributed to the up-regulation of IFN-γ, Gzms-B, perforin, IL-17, IL-6, IL-12, TNF-α expressions and decreased HDAC and IL-10 levels in vitro and in vivo. Moreover, MHY1485 and ABX weakened the effects of QFM on immunomodulation. Collectively, these results suggest that QFM may facilitate immune responses in the LLC-bearing mice via regulating the gut microbiota-derived SCFAs at least partially through targeting the mTOR signaling pathway.

2.
Curr Issues Mol Biol ; 46(1): 430-449, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38248329

RESUMO

As transcription factors derived from transposase, FAR-RED IMPAIRED RESPONSE1 (FAR1) and its homolog FHY3 play crucial roles in the regulation of light signaling and various stress responses by coordinating the expression of downstream target genes. Despite the extensive investigation of the FAR1/FHY3 family in Arabidopsis thaliana and other species, a comprehensive examination of these genes in maize has not been conducted thus far. In this study, we employed a genomic mining approach to identify 16 ZmFAR1 genes in the maize inbred line B73, which were further classified into five subgroups based on their phylogenetic relationships. The present study characterized the predicted polypeptide sequences, molecular weights, isoelectric points, chromosomal distribution, gene structure, conserved motifs, subcellular localizations, phylogenetic relationships, and cis-regulatory elements of all members belonging to the ZmFAR1 family. Furthermore, the tissue-specific expression of the 16 ZmFAR1 genes was analyzed using RNA-seq, and their expression patterns under far-red light conditions were validated in the ear and tassel through qRT-qPCR. The observed highly temporal and spatial expression patterns of these ZmFAR1 genes were likely associated with their specific functional capabilities under different light conditions. Further analysis revealed that six ZmFAR1 genes (ZmFAR1-1, ZmFAR1-10, ZmFAR1-11, ZmFAR1-12, ZmFAR1-14, and ZmFAR1-15) exhibited a response to simulated shading treatment and actively contributed to the development of maize ears. Through the integration of expression quantitative trait loci (eQTL) analyses and population genetics, we identified the presence of potential causal variations in ZmFAR1-14 and ZmFAR1-9, which play a crucial role in regulating the kernel row number and kernel volume weight, respectively. In summary, this study represents the initial identification and characterization of ZmFAR1 family members in maize, uncovering the functional variation in candidate regulatory genes associated with the improvement of significant agronomic traits during modern maize breeding.

3.
Foods ; 12(19)2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37835267

RESUMO

Actinidia arguta, known for its distinctive flavor and high nutritional value, has seen an increase in cultivation and variety identification. However, the characterization of its volatile aroma compounds remains limited. This study aimed to understand the flavor quality and key volatile aroma compounds of different A. arguta fruits. We examined 35 A. arguta resource fruits for soluble sugars, titratable acids, and sugar-acid ratios. Their organic acids and volatile aroma compounds were analyzed using high-performance liquid chromatography (HPLC) and headspace gas chromatography-ion mobility spectrometry (HS-GC-IMS). The study found that among the 35 samples tested, S12 had a higher sugar-acid ratio due to its higher sugar content despite having a high titratable acid content, making its fruit flavor superior to other sources. The A. arguta resource fruits can be classified into two types: those dominated by citric acid and those dominated by quinic acid. The analysis identified a total of 76 volatile aroma substances in 35 A. arguta resource fruits. These included 18 esters, 14 alcohols, 16 ketones, 12 aldehydes, seven terpenes, three pyrazines, two furans, two acids, and two other compounds. Aldehydes had the highest relative content of total volatile compounds. Using the orthogonal partial least squares discriminant method (OPLS-DA) analysis, with the 76 volatile aroma substances as dependent variables and different soft date kiwifruit resources as independent variables, 33 volatile aroma substances with variable importance in projection (VIP) greater than 1 were identified as the main aroma substances of A. arguta resource fruits. The volatile aroma compounds with VIP values greater than 1 were analyzed for odor activity value (OAV). The OAV values of isoamyl acetate, 3-methyl-1-butanol, 1-hexanol, and butanal were significantly higher than those of the other compounds. This suggests that these four volatile compounds contribute more to the overall aroma of A. arguta. This study is significant for understanding the differences between the fruit aromas of different A. arguta resources and for scientifically recognizing the characteristic compounds of the fruit aromas of different A. arguta resources.

4.
Int Immunopharmacol ; 124(Pt A): 110856, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37647680

RESUMO

BACKGROUND: Electroacupuncture (EA) is given to assist in the treatment of MS, which is an effective therapeutic method. However, the therapy mechanism of EA related to stem cells in the treatment of MS is not yet known. In this study, we used a classic animal model of multiple sclerosis: experimental autoimmune encephalomyelitis (EAE) to evaluate the therapeutic effect of EA at Zusanli (ST36) acupoint in EAE and shed light on its potential roles in the effects of stem cells in vivo. METHODS: The EAE animal models were established. From the first day after immunization, EAE model mice received EA at ST36 acupoint, named the EA group. The weight and clinical score of the three groups were recorded for 28 days. The demyelination, inflammatory cell infiltration, and markers of neural stem cells (NSCs), hematopoietic stem cells (HSCs), and mesenchymal stem cells (MSCs) were compared. RESULTS: We showed that EAE mice treated with EA at ST36 acupoint, were suppressed in demyelination and inflammatory cell infiltration, and thus decreased clinical score and weight loss and mitigated the development of EAE when compared with the EAE group. Moreover, our data revealed that the proportions of NSCs, HSCs, and MSCs increased in the EA group compared with the EAE group. CONCLUSIONS: Our study suggested that EA at ST36 acupoint was an effective nonpharmacological therapeutic protocol that not only reduced the CNS demyelination and inflammatory cell infiltration in EAE disease but also increased the proportions of various stem cells. Further study is necessary to better understand how EA at the ST36 acupoint affects EAE.

5.
Medicina (Kaunas) ; 59(4)2023 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-37109742

RESUMO

Background and Objectives: As is well understood, peroxisome proliferator-activated receptor gamma cofactor-related 1 (PPRC1) plays a central role in the transcriptional control of the mitochondrial biogenesis and oxidative phosphorylation (OXPHOS) process, yet its critical role in pan-cancer remains unclear. Materials and Methods: In this paper, the expression levels of PPRC1 in different tumor tissues and corresponding adjacent normal tissues were analyzed based on four databases: The Genotype-Tissue Expression (GTEx), Cancer Cell Line Encyclopedia (CCLE), The Cancer Genome Atlas (TCGA), and Tumor Immune Estimation Resource (TIMER). Meanwhile, the prognostic value of PPRC1 was inferred using Kaplan-Meier plotter and forest-plot studies. In addition, the correlation between PPRC1 expression and tumor immune cell infiltration, immune checkpoints, and the tumor-stemness index was analyzed using TCGA and TIMER databases. Results: According to our findings, the expression level of PPRC1 was found to be different in different cancer types and there was a positive correlation between PPRC1 expression and prognosis in several tumor types. In addition, PPRC1 expression was found to be significantly correlated with immune cell infiltration, immune checkpoints, and the tumor-stemness index in both ovarian and hepatocellular carcinoma. Conclusions: PPRC1 demonstrated promising potential as a novel biomarker in pan-cancer due to its potential association with immune cell infiltration, expression of immune checkpoints, and the tumor-stemness index.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Neoplasias Ovarianas , Feminino , Humanos , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Neoplasias Ovarianas/genética , Prognóstico
6.
J Ethnopharmacol ; 312: 116480, 2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37061069

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Dipsaci Radix (DR) is the dry root of Dipsacus asper Wall. ex DC. AIM OF THE STUDY: The purpose of this study was to compare the effects of DR on rats before and after salt-processed with kidney yang deficiency syndrome (KYDS), and we selected the BMP-Smad signaling pathway to explore the mechanism of DR. MATERIALS AND METHODS: The model of KYDS was established by subcutaneous injection of hydrocortisone, the crude DR (CDR) and salt-processed DR (SDR) were given the corresponding dose (2 g/kg, 4 g/kg, and 6 g/kg). The organ index and the contents of adrenocorticotropic hormone (ACTH), cortistatin (CORT), thyroid hormone (T4), tumor necrosis factor-alpha (TNF-α), testosterone (T), estradiol (E2), cyclic adenosine monophosphate (cAMP), cyclic guanosine monophosphate (cGMP), Na+-K+-ATPase, and growth hormone (GH) in serum were measured to evaluate the intervention effect of DR on KYDS rats. The expression of Smad 1, Smad 4, Smad 5, Smad 8, and BMP 7 protein in kidney was determined by immunohistochemistry, quantitative PCR (qPCR) and Western blot analysis. The effects of DR on 5 expression factors in the BMP-Smad signaling pathway were studied. Constituents absorbed into blood were identified by UPLC-Q-TOF/MS. RESULTS: The results showed that compared with the model group, the thymus and kidney index, as well as the contents of ACTH, CORT, cAMP, GH, Na+-K+-ATPase, T, T4, and E2 were significantly increased in the CDR and SDR groups, and the contents of cGMP and TNF-α were significantly decreased. Compared with the CDR high dose group, ACTH, Na+-K+-ATPase, T, and T4 were significantly increased in the SDR high dose group. The results of immunohistochemistry, qPCR, and Western blot analysis showed that compared with the model group, the expression levels of Smad 1, Smad 4, Smad 5, Smad 8 and BMP 7 proteins in the kidney of DR groups were significantly increased. And SDR groups tended to be better than CDR groups. 8 constituents migrating to blood were identified. CONCLUSION: This study showed that both CDR and SDR could have a good therapeutic effect on KYDS, and SDR was better than CDR. This study chose the BMP-Smad signaling pathway to study the mechanism of DR in the treatment of KYDS and provided a scientific basis for the processing mechanism of salt-processed.


Assuntos
Medicamentos de Ervas Chinesas , Glomerulonefrite , Ratos , Animais , Deficiência da Energia Yang/tratamento farmacológico , Deficiência da Energia Yang/metabolismo , Proteína Morfogenética Óssea 7 , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Fator de Necrose Tumoral alfa , Rim , Glomerulonefrite/tratamento farmacológico , Hormônio Adrenocorticotrópico , Hormônio do Crescimento/uso terapêutico
7.
J Ethnopharmacol ; 309: 116281, 2023 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-36828196

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Dipsaci Radix (DR) is the dry root of the Dipsacus asper Wall. ex DC., which has the function of tonifying the liver and kidney, continuing tendons and bones, and regulating blood vessels. However, there are few reports on the main active ingredients. AIM OF THE STUDY: This study aimed to find the main active components of DR in the treatment of osteoarthritis (OA) by spectrum-effect relationship and compare the differences between RDR and WDR. MATERIALS AND METHODS: Firstly, the high-performance liquid chromatography (HPLC) method was used to establish the fingerprint of DR, and 10 peaks of them were determined by UPLC-Q-TOF/MS. Then, the OA rat model was established by injecting sodium iodoacetate to study the effect of DR on OA. The spectrum-effect relationship was analyzed by grey relational analysis (GRA) and Pearson correlation analysis. RESULTS: According to the pharmacological results, compared with the model group, the cartilage score, tumor necrosis factor-α (TNF-α), interleukin-1ß (IL-1ß), and interleukin-6 (IL-6), and Mankin score of rats in low, medium and high dose groups were decreased, and the therapeutic effect of wine-processed DR tended to be better than raw DR at the same dose. Finally, the active components of DR were preliminarily determined as 4 (loganic acid), 6 (chlorogenic acid), 8 (caffeic acid), 14 (dipsanoside B), 16, and 17 (asperosaponin VI) which had a large correlation in GRA and Pearson correlation analysis. CONCLUSION: This study established the spectrum-effect relationship between the raw and wine-processed DR for the first time, which provided a theoretical basis for the study of the pharmacodynamic substance basis of DR before and after processing. This research provided a reference for the subsequent study of DR.


Assuntos
Dipsacaceae , Medicamentos de Ervas Chinesas , Vinho , Ratos , Animais , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Medicamentos de Ervas Chinesas/análise , Vinho/análise , Quimiometria , Dipsacaceae/química , Cromatografia Líquida de Alta Pressão/métodos
8.
Phytomedicine ; 112: 154695, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36774844

RESUMO

BACKGROUND: Shi chang pu (Acorus tatarinowii Schott) is a herbal used in the treatment of Alzheimer's disease (AD) in China. The essential oil of Shi chang pu (SCP-oil) is the main active component. However, its effects on the neuroinflammation of AD have not been well studied. PURPOSE: Neuroinflammation mediated by the NLRP3 inflammasome plays a crucial role in AD. This study was designed to evaluate the effect of SCP-oil on cognitive impairment of AppSwe/PSEN1M146V/MAPTP301L triple transgenic (3 × Tg-AD) mice model and investigate the mechanism underlying its anti-inflammation effects. METHODS: Thirty-two 3 × Tg-AD mice at 12 months and 8 wild-type B6 mice were used for this experiment. The 3 × Tg-AD mice were administered with SCP-oil or donepezil hydrochloride for 8 weeks. Morris water maze test and step-down test were used to evaluate the cognitive ability of mice. The pathological changes, neuroinflammation, and the NLRP3 inflammasome related-protein of AD mice were detected by histomorphological examination, TUNEL staining, immunofluorescence, immunohistochemistry, qRT-PCR, Elisa, and western blot assays. RESULTS: SCP-oil treatment attenuated cognitive dysfunction of 3 × Tg-AD mice. Moreover, SCP-oil also ameliorated characteristics pathological of AD, such as pathological changes damage, deposition of Aß, phosphorylation of Tau, and neuronal loss. Additionally, SCP-oil treatment alleviated the neuroinflammation and inhibited phosphorylation of IKKß, NF-κB, and NLRP3 inflammasome related-protein NLRP3, ASC, Caspase-1, cleaved-Caspase-1, and GSDMD-N in the hippocampus of 3 × Tg-AD mice. CONCLUSION: Overall, SCP-oil contributed to neuroprotection in 3 × Tg-AD mice by reduced activation of NLRP3 inflammasome by inhibiting the NF-κB signaling pathway.


Assuntos
Acorus , Doença de Alzheimer , Óleos Voláteis , Camundongos , Animais , Inflamassomos/metabolismo , Doença de Alzheimer/metabolismo , Camundongos Transgênicos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , NF-kappa B/metabolismo , Doenças Neuroinflamatórias , Óleos Voláteis/farmacologia , Óleos Voláteis/uso terapêutico , Caspase 1/metabolismo
9.
J Ethnopharmacol ; 307: 116198, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-36690307

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Qingyihuaji Formula (QYHJ), a widely used traditional Chinese medicine (TCM), has been used to treat patients with cancer in China. However, the effect and mechanism of QYHJ on pancreatic ductal adenocarcinoma (PDAC) remains unclear. AIM OF THE STUDY: This study aimed to explore the roles and evaluate the possible underlying molecular mechanisms of QYHJ and its core component in PDAC using label-free quantitative proteomics in conjunction with network pharmacology-based analysis. MATERIALS AND METHODS: By screening differentially expressed proteins (DEPs) in proteomics and QYHJ-predicted gene sets, we identified QYHJ-related PDAC targets annotated with bioinformatic analysis. A subcutaneous tumor model was established to assess the role of QYHJ in vivo. The effects of quercetin (Que), a core component of QYHJ, on cell proliferation, migration, invasion, apoptosis, and autophagy in SW1990 and PANC-1 cells were investigated in vitro. Immunohistochemistry, western blotting, mRFP-GFP-LC3 adenovirus, and kinase analysis were used to determine the underlying mechanisms. RESULTS: Bioinformatics analysis revealed that 41 QYHJ-related PDAC targets were closely related to the cellular response to nitrogen compounds, positive regulation of cell death, regulation of epithelial cell apoptotic processes, and chemokine signaling pathways. CASP3, SRC, STAT1, PTPN11, PKM, and PAK1 with high expression were identified as hub DEPs in the PPI network, and these DEPs were associated with poor overall survival and STAT 1, MAPK/ERK, and PI3K/Akt/mTOR signaling pathways in PDAC patients. QYHJ significantly promoted tumor death in nude mice. Moreover, quercetin inhibited the proliferation, migration, and invasion of PDAC cells. Additionally, Que induced apoptosis and autophagy in PDAC cells. Mechanistically, QYHJ and Que significantly activated STAT 1 and remarkably inhibited the MAPK/ERK and PI3K/Akt/mTOR signaling pathways in vivo and in vitro, respectively. Importantly, ERK1/2 inactivation contributes to que-induced apoptosis in SW1990 and PANC-1 cells. CONCLUSIONS: These results suggest that QYHJ and Que are promising anti-PDAC avenues that benefit from their multiform mechanisms.


Assuntos
Neoplasias Pancreáticas , Proteínas Proto-Oncogênicas c-akt , Animais , Camundongos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Camundongos Nus , Quercetina/farmacologia , Transdução de Sinais , Neoplasias Pancreáticas/genética , Serina-Treonina Quinases TOR/metabolismo , Apoptose , Proliferação de Células , Autofagia , Linhagem Celular Tumoral , Neoplasias Pancreáticas
10.
Int J Neurosci ; : 1-10, 2022 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-36458531

RESUMO

OBJECTIVES: This study aimed to produce an acellular spinal cord scaffold-bone marrow stromal cell (ASCS-BMSC) complex in which the growth of BMSCs transplanted into the spinal cord of rats could be simulated in vitro, facilitating the observation and evaluation of the growth of BMSCs on the ASCS for the first time. METHODS: Freeze-thaw, chemical extraction and mechanical shaking approaches were used to remove the cellular components and prepare a rat ASCS containing only the extracellular matrix (ECM) structure from the rat spinal cord. BMSCs were embedded into ASCSs and freeze-dried agarose scaffolds (FASs), and cell migration and proliferation were observed via fluorescence microscopy and the MTT assay. RESULTS: Compared with the normal rat spinal cord, the ASCS had no cell structure and retained ECM components such as type IV collagen, fibronectin and laminin, showing a three-dimensional network structure with good voids. The growth and proliferation of BMSCs on the ASCS was good, as shown by the MTT assay. Scanning electron microscopy showed that BMSCs covered 65% of the ASCS surface, and the mitochondria of BMSCs were developed and adhered to collagen fibres, as demonstrated by transmission electron microscopy. HE staining showed that BMSCs could grow inside the ASCS, and immunohistochemical staining showed that BMSCs still expressed CD44 and CD90 on the ASCS and had stem cell characteristics. CONCLUSIONS: The results of the experiment indicate that the ASCS has the ability to improve cell adhesion and proliferation. Thus, the ASCS-BMSC combination may be used to treat spinal cord injury.

11.
Int J Mol Sci ; 23(23)2022 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-36499119

RESUMO

Plagiomnium acutum T. Kop. (P. acutum) has been used as a traditional Chinese medicine for thousands of years to treat cancer but lacks evidence. The objective of this work was to reveal the chemical composition of P. acutum essential oil (PEO) and explore its potential antitumor activity and molecular mechanism. PEO was prepared by the simultaneous distillation-extraction method and characterized by gas chromatography/mass spectroscopy. CCK8 assay, flow cytometry, western blot, and immunofluorescence techniques were used to analyze the effects and mechanism of PEO against cancer cells. A total of 74 constituents of PEO were identified, with diterpenes (26.5%), sesquiterpenes (23.89%), and alcohols (21.81%) being the major constituents. Two terpenoids, selina-6-en-4-ol and dolabella-3,7-dien-18-ol, were detected in PEO for the first time. PEO showed significant cell growth inhibitory activity on HepG2 and A549 cells by blocking the G1 phase and inducing apoptosis, which may be attributed to its upregulation of p21Cip1 and p27Kip1 proteins and interference with mitochondrial membrane potential effect. Dolabella-3,7-dien-18-ol accounts for 25.5% of PEO and is one of the main active components of PEO, with IC50 values in HepG2 and A549 cells of (25.820 ± 0.216) µg/mL and (23.597 ± 1.207) µg/mL, respectively. These results confirmed the antitumor medicinal value of P. acutum and showed great application potential in the pharmaceutical industry.


Assuntos
Antineoplásicos Fitogênicos , Bryopsida , Óleos Voláteis , Sesquiterpenos , Humanos , Células A549 , Apoptose , Proliferação de Células , Inibidor de Quinase Dependente de Ciclina p27 , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Sesquiterpenos/farmacologia , Sesquiterpenos/química , Bryopsida/química , Células Hep G2 , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/farmacologia
12.
Front Pharmacol ; 13: 893231, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35991881

RESUMO

Colitis-associated colorectal cancer (CAC) is a specific type of colorectal cancer (CRC) with high mortality and morbidity, the chronic inflammation in the intestinal mucosal is the characteristic of CAC. Chang Qing formula (CQF) is a Chinese herbal formula used clinically for the treatment of CAC with remarkable clinical efficacy, but its mechanism remains unclear. In the present work, Combined network pharmacology and transcriptomics were used to analyze the potential active ingredients and elucidate molecular mechanism of CQF in treating CAC. Firstly, the constituents migrating to blood of CQF were analyzed and identified by UPLC-Q-TOF-MS/MS, and core genes and pathways were screened by network pharmacology analysis. Encyclopedia of Genes and Genomes (KEGG) analysis showed that the IL-17 signaling pathway involved in CAC may be closely associated with the potential mechanismof action of CQF. Subsequently, the results from animal studies indicated that CQF profoundly reduced tumor numbers and tumor size in AOM/DSS mice. The RNA-seq data was analysed utilizing Ingenuity Pathway Analysis (IPA), and the results supported the idea that CQF exerts a tumour-suppressive effect via the IL-17 signalling pathway. Further studies demonstrated that CQF significantly reduced IL-17A levels, which in turn inhibited NF-κB/IL-6/STAT3 signaling cascade, suppressed MMP9 expression and promoted tumor cell apoptosis. In conclusion, the current study demonstrated that CQF remarkably improved inflammatory tumor microenvironment, and hindered the transformation of inflammation into cancer. These findings may help to design future strategies for the treatment of CAC.

13.
Front Genet ; 13: 902064, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35873461

RESUMO

Renal cell carcinoma (RCC) is the most common type of renal cancer, characterized by the dysregulation of metabolic pathways. RCC is the second highest cause of death among patients with urologic cancers and those with cancer cell metastases have a 5-years survival rate of only 10-15%. Thus, reliable prognostic biomarkers are essential tools to predict RCC patient outcomes. This study identified differentially expressed genes (DEGs) in the gene expression omnibus (GEO) database that are associated with pre-and post-metastases in clear cell renal cell carcinoma (ccRCC) patients and intersected these with metabolism-related genes in the Kyoto encyclopedia of genes and genomes (KEGG) database to identify metabolism-related DEGs (DEMGs). GOplot and ggplot packages for gene ontology (GO) and KEGG pathway enrichment analysis of DEMGs with log (foldchange) (logFC) were used to identify metabolic pathways associated with DEMG. Upregulated risk genes and downregulated protective genes among the DEMGs and seven independent metabolic genes, RRM2, MTHFD2, AGXT2, ALDH6A1, GLDC, HOGA1, and ETNK2, were found using univariate and multivariate Cox regression analysis, intersection, and Lasso-Cox regression analysis to establish a metabolic risk score signature (MRSS). Kaplan-Meier survival curve of Overall Survival (OS) showed that the low-risk group had a significantly better prognosis than the high-risk group in both the training cohort (p < 0.001; HR = 2.73, 95% CI = 1.97-3.79) and the validation cohort (p = 0.001; HR = 2.84, 95% CI = 1.50-5.38). The nomogram combined with multiple clinical information and MRSS was more effective at predicting patient outcomes than a single independent prognostic factor. The impact of metabolism on ccRCC was also assessed, and seven metabolism-related genes were established and validated as biomarkers to predict patient outcomes effectively.

14.
Chemosphere ; 303(Pt 2): 135185, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35660396

RESUMO

A low-cost and environment-friendly biochar/geopolymer composite loaded with Fe and Cu nanoparticles (Fe-Cu@BC-GM) was prepared by impregnation-calcination using lignin and kaolin as precursors. SEM, FTIR and XRD analysis suggested that the Fe-Cu@BC-GM had a certain pore structure, rich functional groups and stable crystal structure. The obtained Fe-Cu@BC-GM was used as the catalyst of potassium peroxymonosulfate (PMS) for remediation of wastewater and soil polluted by naphthalene (NAP). Experimental results indicated that Fe-Cu@BC-GM exhibited outstanding catalytic performance, and the maximum degradation rate of NAP in water and soil reached 98.35% and 67.98% within 120 min, respectively. The XPS measurement confirmed the presence of successive Fe (Ⅲ)/Fe (Ⅱ) and Cu(Ⅱ)/Cu(Ⅰ) redox pairs cycles on the surface of Fe-Cu@BC-GM, which made Fe (Ⅲ) and Cu(Ⅰ) continuously generated Fe (Ⅱ) activating PMS to produce SO4·- and ·OH for the degradation of NAP. The effects of Fe-Cu@BC-GM/PMS system on plant toxicity were evaluated by analyzing the degradation intermediates and bioassay of mung bean. It was proved that the Fe-Cu@BC-GM/PMS system could degrade NAP into less toxic intermediates, and the seed germination rate, root and stem length of mung bean after soil remediation were not notably different from those of the uncontaminated soil. This work opened new prospect for the application of geopolymer in degradation of persistent organic pollutants (POPs) and provided a cost-effective option for the remediation of the persistent organic pollutants contaminated water and soil.


Assuntos
Cobre , Nanopartículas , Carvão Vegetal/química , Cobre/química , Ferro/química , Naftalenos , Peróxidos/química , Poluentes Orgânicos Persistentes , Pós , Solo , Água
15.
Biomed Pharmacother ; 150: 113035, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35658207

RESUMO

Naringin is one of the natural flavonoids extracted from many Chinese medicines. It ameliorates endothelial dysfunctions in atherosclerosis, diabetes, and cardiovascular diseases through free radical scavenging and antioxidant activities. The aim of the present study was to investigate the protective effects of naringin against pulmonary endothelial permeability in addition to airway inflammation in lipopolysaccharide/cigarette smoke (LPS/CS)-induced chronic obstructive pulmonary disease (COPD) mice.The COPD mice were exposed to LPS twice through intranasal inhalation and then to cigarette smoke daily for 6 weeks. The mice were orally administrated with naringin at doses of 40 or 80 mg/kg one hour before cigarette smoke exposure since the first day of the experiment. Naringin significantly alleviated pulmonary histopathological injury, and suppressed inflammatory cell infiltration and cytokine release in bronchoalveolar lavage fluid. Naringin decreased fluorescence intensity of Evans Blue in the lung tissues, and elevated the expression levels of tight junctional proteins. Meanwhile, naringin decreased neutrophil/lymphocyte/platelet counts and MDA content in blood, and upregulated Aquaporin1 (AQP1) in the lung tissues. However, the effect of naringin on airway inflammation and pulmonary endothelial permeability was inhibited in LPS/CS-treatment AQP1 deficiency mice. These results indicated that naringin attenuated LPS/CS-induced airway inflammatory and pulmonary hyperpermeability via upregulating AQP1 expression.


Assuntos
Fumar Cigarros , Doença Pulmonar Obstrutiva Crônica , Animais , Líquido da Lavagem Broncoalveolar , Modelos Animais de Doenças , Flavanonas , Inflamação/tratamento farmacológico , Lipopolissacarídeos/farmacologia , Pulmão , Camundongos , Camundongos Endogâmicos C57BL , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Nicotiana
16.
Clin Transl Med ; 12(6): e947, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35735103

RESUMO

BACKGROUND: Accumulation of evidence suggests that the gut microbiome, its specific metabolites, and differentially expressed proteins (DEPs) are related to non-small cell lung cancer (NSCLC) pathogenesis. We now report the influences of the gut microbiota, metabolites, and DEPs on the mediation of NSCLC's chronic inflammation and immune dysregulation. METHODS: We conducted 16S ribosomal RNA sequencing for the gut microbiome in healthy volunteers and NSCLC patients. Liquid chromatography-mass spectrometry (LC-MS) analysis was employed to explore differences between metabolites and DEPs in serum samples. Additionally, LC-MS-based metabolomic analysis was conducted in 40 NSCLC tissues and 40 adjacent tissues. The omics data were separately analysed and integrated by using Spearman's correlation coefficient. Then, faecal microbiota transplantation (FMT) assay was used to assess the effects of the gut microbiome and specific metabolites in mice. RESULTS: Faecal microbiome analysis revealed gut microflora dysbiosis in NSCLC patients with Prevotella, Gemmiger, and Roseburia significantly upregulated at the genus level. Then, we identified that nervonic acid/all-trans-retinoic acid level was negatively related to Prevotella. Additionally, a total of core 8 DEPs were selected in the proteome analysis, which mainly participated in the production of IL-8 and NF-κB pathways. CRP, LBP, and CD14 were identified as potential biomarkers for NSCLC. Transplantation of faecal microbiota from patients with NSCLC or Prevotella copri-colonized recipient in mice resulted in inflammation and immune dysregulation. In turn, nervonic acid/all-trans-retinoic acid treatment improved the phenotype of C57BL/6 mice bearing P. copri-treated Lewis lung cancer (LLC). CONCLUSIONS: Overall, these results pointed out that P. copri-nervonic acid/all-trans-retinoic acid axis may contribute to the pathogenesis of NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Microbiota , Animais , Bactérias/genética , Humanos , Inflamação , Metaboloma , Camundongos , Camundongos Endogâmicos C57BL , Proteoma/farmacologia , Tretinoína/farmacologia
17.
Discov Oncol ; 13(1): 46, 2022 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-35689739

RESUMO

BACKGROUND: Takeda G protein receptor 5 (TGR5) is widely recognized as a potential drug target for the treatment of metabolic diseases. TGR5 is not only a metabolic regulator, but also has a potential role that participating in developing and progressing of gastrointestinal cancer. We aimed to investigate the potential role of TGR5 in pancreatic cancer by utilizing molecular experiments and the liquid chromatography mass spectrometry (LC-MS) based metabolomics. METHODS: Herein, we assessed pancreatic cancer proliferation, migration and invasion in response to TGR5 antagonist SBI-115 in vitro experiments. Cell death was examined by using TUNEL assay on agarose-embedded sections. Then we investigated the effects of TGR5 on PANC-1 and BXPC3 cells via transmission electron microscopy (TEM). Moreover, LC-MS-based metabolomics was performed to explore the potential underlying mechanisms of TGR5 in pancreatic cancer. The correlations between TGR5 and the metabolism-related genes were further analysed by GEPIA 2 database. RESULTS: We found the proliferation capacities were decreased significantly in PANC-1 and BXPC3 cells after the treatment of SBI-115 for 48 h. The results of TUNEL assay showed that antagonism of TGR5 by SBI-115 had a remarkable effect on inducing cell death. Analysis of TEM demonstrated that SBI-115 treatment could impair the morphology of mitochondria in most PANC-1 and BXPC3 cells. The LC-MS-based analyses revealed that antagonism of TGR5 could alter the metabolic profiles of PANC-1 cells in vitro. Moreover, TGR5 was associated with some metabolism-related genes in pancreatic cancer. CONCLUSION: Our data suggests that antagonism of TGR5 may suppress cell proliferation and induce apoptosis in pancreatic cancer cells. TGR5 may affect the metabolism of pancreatic cancer, and TGR5 would be an attractive target for pancreatic cancer treatment.

18.
Sci Total Environ ; 832: 155091, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35398127

RESUMO

An economical, efficient, and environmentally friendly technology was developed for simultaneous remediation of heavy metals and polycyclic aromatic hydrocarbons (PAHs) in soil and water. In this study, using pinecones powder as the precursor, the core-shell structural nitrogen-doped carbon foam loaded with nano zero-valent iron (nZVI@NCF) was synthesized through Mannich reaction and high-temperature carbon reduction. The nZVI@NCF was applied as the adsorbent and catalyst to simultaneously remediate the composite pollutants of Cd (II) and naphthalene (NAP). Under the optimal conditions, the adsorption capacity of Cd (II) in water and soil were 13.9 mg·g-1 and 1.97 mg·g-1, respectively, and the adsorption process conformed to the pseudo-second-order kinetic model. The degradation rates of NAP in water (10 mg·L-1) reached almost 100% as well as it could reach 59.12% in soil (10 mg·kg-1). In addition, it was proved that the presence of NAP could compete with Cd (II) for the active sites on the surface of the material to inhibit the adsorption of Cd (II), while the co-existence of Cd (II) could improve the degradation of NAP by the nZVI@NCF/PMS system due to the nZVI-Cd bimetallic effect and the pro-oxidant effect of Cd (II) promoting the generation of ROS. The free radical quenching experiment revealed that the generated ·O2- was the main substance that mediated the redox of nZVI/Fe2+/Fe3+ to oxidative NAP during the degradation process. Furthermore, the results of the phytotoxicity test demonstrated that the nZVI@NCF/PMS system could effectively remediate the soil co-contaminated with Cd (II) and NAP as well as improve the soil environment quality. This research will provide new materials and potential technologies for the efficient treatment of the composite pollutants in the environment.


Assuntos
Recuperação e Remediação Ambiental , Poluentes do Solo , Poluentes Químicos da Água , Cádmio/análise , Carbono , Ferro/química , Cinética , Naftalenos , Nitrogênio , Solo , Poluentes do Solo/análise , Água , Poluentes Químicos da Água/análise
19.
Phytomedicine ; 96: 153852, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35026508

RESUMO

BACKGROUND: Sanghuangporus vaninii, a large precious medicinal fungus called Sanghuang in China, has significant antitumor activity. We previously reported that a Sanghuangporus vaninii extract could lead to apoptosis in HT-29 cells through the intrinsic apoptotic pathway. We further found that Inoscavin A exhibited anti-colon cancer activity, but its specific mechanisms have not been fully elucidated. METHODS: Inoscavin A was obtained from Sanghuangporus vaninii by the classic phytochemical separation technology. The male BALB/c nude mice were injected with HT-29 colon cancer cells as animal model. In order to observe the pathological changes of tumor section, the hematoxylin-eosin(H&E) staining was applied in the histological analysis. Metabolomics was utilized for the investigation of the overall changes of serum metabolites in animal model, and the potential targets of Inoscavin A were analyzed by Ingenuity Pathway Analysis (IPA). We further employed a molecular docking approach to predict the degree of combination of Inoscavin A and Smo. Then we further performed Western blotting and immunofluorescence analysis to investigate the expression of proteins involved in Hh-related pathways in tumor tissues. In addition, the colony formation assay, scratch-wound assay and transwell migration and invasion assay were conducted to evaluate the anti-colon-cancer activity of Inoscavin A. Concurrently, the mitochondrial membrane potential assay and TUNEL apoptosis assay were detected to demonstrate the effect of Inoscavin A on promoting HT-29 cells apoptosis. Western blot experiments verified the anti-tumor effects of Inoscavin A were modulated the protein expression of Shh, Ptch1, Smo and Gli1 in HT-29 cells. RESULTS: We showed that Inoscavin A, a pyrone compound isolated from the Sanghuangporus vaninii extract, exerted its antitumor activity in an HT-29 colon cancer cell xenograft mouse model. Subsequently, we first time prove that the antitumor effects of Inoscavin A were related to the hedgehog (Hh) signaling pathway. Furthermore, we demonstrated that Smo, the core receptor of the Hh pathway, was critical for the induction of apoptosis of Inoscavin A and that overexpression of this target could significantly rescue cell apoptosis induced by Inoscavin A treatment. CONCLUSION: Thus, our studies first propose that the natural outgrowth Inoscavin A exerted its anti-cancer effects by inhibiting Smo to suppress the activity of the Hh pathway though inhibiting cell proliferation and promoting apoptosis. These findings further indicate that Inoscavin A will be expected to be a prospective remedical compound for the treatment of colon cancer.


Assuntos
Neoplasias do Colo , Proteínas Hedgehog , Animais , Apoptose , Basidiomycota , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias do Colo/tratamento farmacológico , Masculino , Camundongos , Camundongos Nus , Simulação de Acoplamento Molecular , Extratos Vegetais/farmacologia , Estudos Prospectivos , Pironas , Transdução de Sinais , Proteína GLI1 em Dedos de Zinco/metabolismo
20.
Chemosphere ; 286(Pt 1): 131603, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34325259

RESUMO

A promising technology was developed for the remediation of fluoranthene (FLT) contaminated water and soil. Specifically, iron nanoparticles supported on N-doped carbon foam (Fe@CF-N) was synthesized by in-situ impregnation and a unique calcination process using pine cone as the precursor. The obtained Fe@CF-N was used as an activator of potassium peroxymonosulfate (PMS) to degrade FLT in water and soil. According to experimental results, Fe@CF-N had a three-dimensional network structure with a large specific surface area of 249.0 m2 g-1, displaying excellent catalytic performance. The maximum removal efficiency of FLT in water and soil reached 81.83% and 78.12% within 180 min, respectively. After four consecutive degradation cycles, the removal efficiency of FLT in water was still 55%. Electron spin resonance (ESR) measurements showed that hydroxyl radicals (·OH), sulfate radical (SO4-·) and 1O2 were the major reactive oxygen species (ROS). A series of low molecular weight intermediates were generated during the FLT degradation progress, such as C6H6O3 and C3H8O2. The effect of Fe@CF-N/PMS system on the phytotoxicity was evaluated via bioassay based on peas. The results indicated that seed germination rate and root shoot elongation of remediated soil by Fe@CF-N/PMS system were not significantly different from those of noncontaminated soil. This study provided a cost-effective remediation option for PAHs contaminated water and soil.


Assuntos
Ferro , Nanopartículas , Carbono , Fluorenos , Peróxidos , Solo , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA