Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 273(Pt 1): 132924, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38866282

RESUMO

The continuous stimulation of periodontitis leads to a decrease in the number of stem cells within the lesion area and significantly impairing their regenerative capacity. Therefore, it is crucial to promote stem cell homing and regulate the local immune microenvironment to suppress inflammation for the regeneration of periodontitis-related tissue defects. Here, we fabricated a novel multifunctional bilayer nanofibrous membrane using electrospinning technology. The dense poly(caprolactone) (PCL) nanofibers served as the barrier layer to resist epithelial invasion, while the polyvinyl alcohol/chitooligosaccharides (PVA/COS) composite nanofiber membrane loaded with calcium beta-hydroxy-beta-methylbutyrate (HMB-Ca) acted as the functional layer. Material characterization tests revealed that the bilayer nanofibrous membrane presented desirable mechanical strength, stability, and excellent cytocompatibility. In vitro, PCL@PVA/COS/HMB-Ca (P@PCH) can not only directly promote rBMSCs migration and differentiation, but also induce macrophage toward pro-healing (M2) phenotype-polarization with increasing the secretion of anti-inflammatory and pro-healing cytokines, thus providing a favorable osteoimmune environment for stem cells recruitment and osteogenic differentiation. In vivo, the P@PCH membrane effectively recruited host MSCs to the defect area, alleviated inflammatory infiltration, and accelerated bone defects repair. Collectively, our data indicated that the P@PCH nanocomposite membrane might be a promising biomaterial candidate for guided tissue regeneration in periodontal applications.


Assuntos
Macrófagos , Células-Tronco Mesenquimais , Nanofibras , Nanofibras/química , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/citologia , Animais , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Diferenciação Celular/efeitos dos fármacos , Poliésteres/química , Periodontite/terapia , Periodontite/tratamento farmacológico , Membranas Artificiais , Regeneração/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Alicerces Teciduais/química , Camundongos , Ratos , Humanos , Álcool de Polivinil/química
2.
Cell Mol Life Sci ; 79(11): 551, 2022 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-36244032

RESUMO

Periodontal ligament (PDL) cells are a promising tool for periodontal regeneration therapy. Achieving a sufficient number of PDL cells is essential to PDL regeneration. In our study, appropriate flow shear stress (FSS, 1-6 dyn/cm2) promotes the proliferation of PDL cells. FSS remodels cytoskeleton and focal adhesion in a duration-dependent manner. FSS induces PDL cells to form the actin cap within 10 min, flattens the nuclei, and increases the nuclear pore size, which promotes nuclear translocation of Yes-associated protein (YAP). FSS activates p38, which plays a dual function in YAP regulation. p38 regulates the phosphorylation of Akt and cofilin, as well as induced F-actin polymerization to induce YAP activity. In addition, p38 inhibits pLATS and consecutively regulates angiomotin (AMOT) and YAP phosphorylation. AMOT competitively binds to F-actin and YAP to participate in FSS-mediated YAP nuclear translocation and cell proliferation. Taken collectively, our results provide mechanistic insights into the role of p38-AMOT-YAP in FSS-mediated PDL cells proliferation and indicate potential applications in dental regenerative medicine.


Assuntos
Actinas , Ligamento Periodontal , Fatores de Despolimerização de Actina/metabolismo , Actinas/metabolismo , Angiomotinas , Proliferação de Células , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas de Sinalização YAP
3.
Chem Biodivers ; 18(5): e2001023, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33721383

RESUMO

In this study, Dendrobium officinale polysaccharide (named DOPS-1) was isolated from the stems of Dendrobium officinale by hot-water extraction and purified by using Sephadex G-150 column chromatography. The structural characterization, antioxidant and cytotoxic activity were carried out. Based on the results of HPLC, GC, Congo red experiment, together with periodate oxidation, Smith degradation, SEM, FT-IR, and NMR spectral analysis, it expressed that DOPS-1 was largely composed of mannose, glucose and galacturonic acid in a molar ratio of 3.2 : 1.3 : 1. The molecular weight of DOPS-1 was 1530 kDa and the main chain was composed of (1→4)-ß-D-Glcp, (1→4)-ß-D-Manp and 2-O-acetyl-(1→4)-ß-D-Manp. The measurement results of antioxidant activity showed that DOPS-1 had the strong scavenging activities on hydroxyl radicals, DPPH radicals and superoxide radicals and the high reducing ability in vitro. Moreover, DOPS-1 was cytotoxic to all three human cancer cells of MDA-MB-231, A549 and HepG2.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Antioxidantes/farmacologia , Dendrobium/química , Extratos Vegetais/farmacologia , Polissacarídeos/farmacologia , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/isolamento & purificação , Antioxidantes/química , Antioxidantes/isolamento & purificação , Compostos de Bifenilo/antagonistas & inibidores , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Picratos/antagonistas & inibidores , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Caules de Planta/química , Polissacarídeos/química , Polissacarídeos/isolamento & purificação
4.
Mol Plant ; 13(5): 698-716, 2020 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-31904511

RESUMO

The molecular links between extracellular signals and the regulation of localized protein synthesis in plant cells are poorly understood. Here, we show that in Arabidopsis thaliana, the extracellular peptide RALF1 and its receptor, the FERONIA receptor kinase, promote root hair (RH) tip growth by modulating protein synthesis. We found that RALF1 promotes FERONIA-mediated phosphorylation of eIF4E1, a eukaryotic translation initiation factor that plays a crucial role in the control of mRNA translation rate. Phosphorylated eIF4E1 increases mRNA affinity and modulates mRNA translation and, thus, protein synthesis. The mRNAs targeted by the RALF1-FERONIA-eIF4E1 module include ROP2 and RSL4, which are important regulators of RH cell polarity and growth. RALF1 and FERONIA are expressed in a polar manner in RHs, which facilitate eIF4E1 polar localization and thus may control local ROP2 translation. Moreover, we demonstrated that high-level accumulation of RSL4 exerts negative-feedback regulation of RALF1 expression by directly binding the RALF1 gene promoter, determining the final RH size. Our study reveals that the link between RALF1-FERONIA signaling and protein synthesis constitutes a novel component regulating cell expansion in these polar growing cells.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Fator de Iniciação 4E em Eucariotos/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Biossíntese de Proteínas , Arabidopsis/genética , Tamanho Celular , Retroalimentação Fisiológica , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Tamanho do Órgão , Hormônios Peptídicos/metabolismo , Fosforilação , Fosfotransferases/metabolismo , Regiões Promotoras Genéticas/genética , Ligação Proteica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
5.
PLoS Biol ; 16(10): e2006340, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30339663

RESUMO

FERONIA (FER), a plasma membrane receptor-like kinase, is a central regulator of cell growth that integrates environmental and endogenous signals. A peptide ligand rapid alkalinization factor 1 (RALF1) binds to FER and triggers a series of downstream events, including inhibition of Arabidopsis H+-ATPase 2 activity at the cell surface and regulation of gene expression in the nucleus. We report here that, upon RALF1 binding, FER first promotes ErbB3-binding protein 1 (EBP1) mRNA translation and then interacts with and phosphorylates the EBP1 protein, leading to EBP1 accumulation in the nucleus. There, EBP1 associates with the promoters of previously identified RALF1-regulated genes, such as CML38, and regulates gene transcription in response to RALF1 signaling. EBP1 appears to inhibit the RALF1 peptide response, thus forming a transcription-translation feedback loop (TTFL) similar to that found in circadian rhythm control. The plant RALF1-FER-EBP1 axis is reminiscent of animal epidermal growth factor receptor (EGFR) signaling, in which EGF peptide induces EGFR to interact with and phosphorylate EBP1, promoting EBP1 nuclear accumulation to control cell growth. Thus, we suggest that in response to peptide signals, plant FER and animal EGFR use the conserved key regulator EBP1 to control cell growth in the nucleus.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas Nucleares/metabolismo , Hormônios Peptídicos/metabolismo , Fosfotransferases/metabolismo , Animais , Arabidopsis/citologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Núcleo Celular/metabolismo , Proliferação de Células/genética , Retroalimentação Fisiológica , Genes de Plantas , Modelos Biológicos , Mutação , Proteínas Nucleares/genética , Hormônios Peptídicos/genética , Fosforilação , Fosfotransferases/genética , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA de Plantas/genética , RNA de Plantas/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transdução de Sinais , Técnicas do Sistema de Duplo-Híbrido
6.
Anal Chem ; 90(22): 13459-13466, 2018 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-30345746

RESUMO

Precise and dynamic imaging of extracellular pH is one crucial yet challenging task for studying cell physiological and pathological processes. Here, we construct a DNA tweezer to dynamically monitor pH changes of cellular microenvironments. The DNA tweezer contains three key elements: a three-strand ssDNA-frame labeled with cholesterol to anchor it on the cell membrane, a pH-sensitive i-motif sequence in the middle to dynamically control the switch between the "open" and "closed" states of the DNA tweezer, and a pair of FRET fluorophores (rhodamine green and rhodamine red) on the two arms of the tweezer to reflect its state. With cholesterol, a natural component of cell membranes, as an anchoring element, the sensor exhibited high cell-membrane-insertion efficiency and low cytotoxicity. Using the i-motif as a sensing element, it can quickly and reversibly respond to extracellular pH in the pH range of 5.0-7.5 and further perform real-time imaging of cell-surface-pH changes with excellent spatial and temporal resolution. Moreover, apoplastic-pH change during the alkalization process of plant roots caused by rapid-alkalinization factor (RALF1) was directly detected by the sensor, demonstrating the potential applications of the sensor in cell biology, biomedical research, and plant-tissue engineering.


Assuntos
DNA de Cadeia Simples/química , Microscopia Confocal/métodos , Microscopia de Fluorescência/métodos , Microambiente Tumoral/fisiologia , Arabidopsis/metabolismo , Linhagem Celular Tumoral , Membrana Celular/química , Colesterol/análogos & derivados , Transferência Ressonante de Energia de Fluorescência/métodos , Corantes Fluorescentes/química , Humanos , Concentração de Íons de Hidrogênio , Raízes de Plantas/metabolismo , Rodaminas/química
7.
Proc Natl Acad Sci U S A ; 113(51): E8326-E8334, 2016 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-27930296

RESUMO

A number of hormones work together to control plant cell growth. Rapid Alkalinization Factor 1 (RALF1), a plant-derived small regulatory peptide, inhibits cell elongation through suppression of rhizosphere acidification in plants. Although a receptor-like kinase, FERONIA (FER), has been shown to act as a receptor for RALF1, the signaling mechanism remains unknown. In this study, we identified a receptor-like cytoplasmic kinase (RPM1-induced protein kinase, RIPK), a plasma membrane-associated member of the RLCK-VII subfamily, that is recruited to the receptor complex through interacting with FER in response to RALF1. RALF1 triggers the phosphorylation of both FER and RIPK in a mutually dependent manner. Genetic analysis of the fer-4 and ripk mutants reveals RIPK, as well as FER, to be required for RALF1 response in roots. The RALF1-FER-RIPK interactions may thus represent a mechanism for peptide signaling in plants.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/crescimento & desenvolvimento , Hormônios Peptídicos/fisiologia , Raízes de Plantas/crescimento & desenvolvimento , Proteínas Quinases/fisiologia , Arabidopsis/genética , Citoplasma/metabolismo , Ligantes , Microscopia Confocal , Mutação , Fenótipo , Fosforilação , Fosfotransferases/fisiologia , Fotoperíodo , Filogenia , Reguladores de Crescimento de Plantas/fisiologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Domínios Proteicos , Sementes/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA