Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
World J Clin Oncol ; 15(9): 1126-1131, 2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-39351457

RESUMO

Gastric signet-ring cell carcinoma (GSRCC) is a subtype of gastric cancer with distinct phenotype and high risk of peritoneal metastasis. Studies have shown that early GSRCC has a good prognosis, while advanced GSRCC is insensitive to radiotherapy, chemotherapy or immune checkpoint blockade therapy. With technological advancement of single-cell RNA sequencing analysis and cytometry by time of flight mass cytometry, more detailed atlas of tumor microenvironment (TME) in GSRCC and its association with prognosis could be investigated extensively. Recently, two single-cell RNA sequencing studies revealed that GSRCC harbored a unique TME, manifested as highly immunosuppressive, leading to high immune escape. The TME of advanced GSRCC was enriched for immunosuppressive factors, including the loss of CXCL13 +-cluster of differentiation 8+-Tex cells and declined clonal crosstalk among populations of T and B cells. In addition, GSRCC was mainly infiltrated by follicular B cells. The increased proportion of SRCC was accompanied by a decrease in mucosa-associated lymphoid tissue-derived B cells and a significant increase in follicular B cells, which may be one of the reasons for the poor prognosis of GSRCC. By understanding the relationship between immunosuppressive TME and poor prognosis in GSRCC and the underlying mechanism, more effective immunotherapy strategies and improved treatment outcomes of GSRCC can be anticipated.

2.
Oncogenesis ; 13(1): 34, 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39333078

RESUMO

Oxaliplatin is effective against colorectal cancer (CRC), but resistance hampers treatment. We found upregulated Dickkopf-1 (DKK1, a secreted protein) in oxaliplatin-resistant (OR) CRC cell lines and DKK1 levels increased by more than 2-fold in approximately 50% of oxaliplatin-resistant CRC tumors. DKK1 activates AKT via cytoskeleton-associated protein 4 (CKAP4, a DKK1 receptor), modulating oxaliplatin responses in vitro and in vivo. The leucine zipper (LZ) domain of CKAP4 and cysteine-rich domain 1 (CRD1) of secreted DKK1 are crucial for their interaction and AKT signaling. By utilizing the LZ protein, we disrupted DKK1 signaling, enhancing oxaliplatin sensitivity in OR CRC cells and xenograft tumors. This suggests that DKK1 as a chemoresistant factor in CRC via AKT activation. Targeting DKK1 with the LZ protein offers a promising therapeutic strategy for oxaliplatin-resistant CRC with high DKK1 levels. This study sheds light on oxaliplatin resistance mechanisms and proposes an innovative intervention for managing this challenge.

3.
mSphere ; 9(7): e0005924, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-38980075

RESUMO

Osseointegrated dental implants replace missing teeth and create an artificial surface for biofilms of complex microbial communities to grow. These biofilms on implants and dental surfaces can trigger infection and inflammation in the surrounding tissue. This study investigated the microbial characteristics of peri-implant mucositis (PM) and explored the correlation between microbial ecological imbalance, community function, and disease severity by comparing the submucosal microflora from PM with those of healthy inter-subject implants and intra-subject gingivitis (G) within a group of 32 individuals. We analyzed submucosal plaques from PM, healthy implant (HI), and G sites using metagenome shotgun sequencing. The bacterial diversity of HIs was higher than that of PM, according to the Simpson index. Beta diversity revealed differences in taxonomic and functional compositions across the groups. Linear discriminant analysis of the effect size identified 15 genera and 37 species as biomarkers that distinguished PM from HIs. Pathways involving cell motility and protein processing in the endoplasmic reticulum were upregulated in PM, while pathways related to the metabolism of cofactors and vitamins were downregulated. Microbial dysbiosis correlated positively with the severity of clinical inflammation measured by the sulcus bleeding index (SBI) in PM. Prevotella and protein processing in the endoplasmic reticulum also correlated positively with the SBI. Our study revealed PM's microbiological and functional traits and suggested the importance of certain functions in disease severity.IMPORTANCEPeri-implant mucositis is an early stage in the progression of peri-implantitis. The high prevalence of it has been a threat to the widespread use of implant prosthodontics. The link between the submucosal microbiome and peri-implant mucositis was demonstrated previously. Nevertheless, the taxonomic and functional composition of the peri-implant mucositis microbiome remains controversial. In this study, we comprehensively characterize the microbial signature of peri-implant mucositis and for the first time, we investigate the correlations between microbial dysbiosis, functional potential, and disease severity. With the help of metagenomic sequencing, we find the positive correlations between microbial dysbiosis, genus Prevotella, pathway of protein processing in the endoplasmic reticulum, and more severe mucosal bleeding in the peri-implant mucositis. Our studies offer insight into the pathogenesis of peri-implant mucositis by providing information on the relationships between community function and disease severity.


Assuntos
Bactérias , Implantes Dentários , Disbiose , Microbiota , Humanos , Masculino , Pessoa de Meia-Idade , Feminino , Bactérias/classificação , Bactérias/isolamento & purificação , Bactérias/genética , Implantes Dentários/microbiologia , Implantes Dentários/efeitos adversos , Adulto , Disbiose/microbiologia , Índice de Gravidade de Doença , Idoso , Gengivite/microbiologia , Peri-Implantite/microbiologia , Mucosite/microbiologia , Estomatite/microbiologia , Estomatite/etiologia , Metagenoma , Biofilmes/crescimento & desenvolvimento
4.
Food Chem Toxicol ; 191: 114875, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39033872

RESUMO

Our previous study identified that nuclear factor-erythroid-2 p45-related factor 2 (NRF2) was activated in arsenite-induced tumorigenesis. However, the underlying mechanisms of NRF2 mediating apoptosis in arsenic-induced skin carcinogenesis remain unknown. This study explored the dynamic changes in apoptosis rate and the expression of apoptosis proteins in immortalized human keratinocytes (HaCaT) malignant transformation caused by 1.0 µM NaAsO2 at passages 0, 1, 7, 14, 21, 28, and 35. The result showed that the apoptosis rate decreased. The apoptosis-related proteins cleaved-caspase-3/caspase-3 ratio decreased in the later stages (passages 21, 28, and 35). Moreover, the expression of intrinsic ER stress pathway-related CHOP, ATF4, ATF6, and the intrinsic mitochondrial pathway-related Bax protein decreased in the later stages, while Bcl-2 and Mcl-1 increased, and NRF2 protein levels also increased. The apoptosis rate increased by silencing NRF2 expression in arsenite-transformed HaCaT (T-HaCaT) cells. Meanwhile, the expression of pro-apoptotic proteins (cleaved-caspase-3/caspase-3, CHOP, Bax) and ATF4, ATF6 increased. On the contrary, antiapoptotic protein levels (Bcl-2 and Mcl-1) decreased. The ability of colony formation and migration of T-HaCaT cells decreased. In conclusion, arsenite activated NRF2 in the later stages, decreasing apoptosis characterized by inhibiting endoplasmic reticulum stress-depended and mitochondria-depended apoptosis pathway, and further promoting NaAsO2-induced HaCaT cellular malignant transformation.


Assuntos
Apoptose , Arsenitos , Queratinócitos , Fator 2 Relacionado a NF-E2 , Humanos , Apoptose/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/genética , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Arsenitos/toxicidade , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Transformação Celular Neoplásica/induzido quimicamente , Transformação Celular Neoplásica/efeitos dos fármacos , Transformação Celular Neoplásica/metabolismo , Linhagem Celular
5.
Front Microbiol ; 14: 1182346, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37655344

RESUMO

Objective: Gut microbiota plays an important role in colorectal cancer (CRC) pathogenesis through microbes and their metabolites, while oral pathogens are the major components of CRC-associated microbes. Multiple studies have identified gut and fecal microbiome-derived biomarkers for precursors lesions of CRC detection. However, few studies have used salivary samples to predict colorectal polyps. Therefore, in order to find new noninvasive colorectal polyp biomarkers, we searched into the differences in fecal and salivary microbiota between patients with colorectal polyps and healthy controls. Methods: In this case-control study, we collected salivary and fecal samples from 33 patients with colorectal polyps (CP) and 22 healthy controls (HC) between May 2021 and November 2022. All samples were sequenced using full-length 16S rRNA sequencing and compared with the Nucleotide Sequence Database. The salivary and fecal microbiota signature of colorectal polyps was established by alpha and beta diversity, Linear discriminant analysis Effect Size (LEfSe) and random forest model analysis. In addition, the possibility of microbiota in identifying colorectal polyps was assessed by Receiver Operating Characteristic Curve (ROC). Results: In comparison to the HC group, the CP group's microbial diversity increased in saliva and decreased in feces (p < 0.05), but there was no significantly difference in microbiota richness (p > 0.05). The principal coordinate analysis revealed significant differences in ß-diversity of salivary and fecal microbiota between the CP and HC groups. Moreover, LEfSe analysis at the species level identified Porphyromonas gingivalis, Fusobacterium nucleatum, Leptotrichia wadei, Prevotella intermedia, and Megasphaera micronuciformis as the major contributors to the salivary microbiota, and Ruminococcus gnavus, Bacteroides ovatus, Parabacteroides distasonis, Citrobacter freundii, and Clostridium symbiosum to the fecal microbiota of patients with polyps. Salivary and fecal bacterial biomarkers showed Area Under ROC Curve of 0.8167 and 0.8051, respectively, which determined the potential of diagnostic markers in distinguishing patients with colorectal polyps from controls, and it increased to 0.8217 when salivary and fecal biomarkers were combined. Conclusion: The composition and diversity of the salivary and fecal microbiota were significantly different in colorectal polyp patients compared to healthy controls, with an increased abundance of harmful bacteria and a decreased abundance of beneficial bacteria. A promising non-invasive tool for the detection of colorectal polyps can be provided by potential biomarkers based on the microbiota of the saliva and feces.

6.
Waste Manag ; 166: 141-151, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37172515

RESUMO

The investigation of the pyrolysis behaviour of real-world waste plastics (RWWP) and using them as the feedstock to produce carbon nanotubes (CNTs) could serve as an effective solution to address the global waste plastics catastrophe. This research aimed to characterize the pyrolysis behaviour of RWWP via thermogravimetric analysis (TG) and fast pyrolysis-TG/mass spectrometry (Py-TG/MS) analyses. Activation energies (131.04 kJ mol-1 -171.04 kJ mol-1) for RWWP pyrolysis were calculated by three methods: Flynn-Wall-Ozawa (FWO) method, Kissinger-Akahira-Sunose (KAS) method, and Starink method. Py-TG/MS results indicated that the RWWP could be identified as polystyrene (RWWP-1), polyethylene (RWWP-2), polyethylene terephthalate (RWWP-3, 4), and polypropylene (RWWP-5, 6). In addition, RWWP-1, 2, 5, 6 outperform RWWP-3 and 4 as sources of carbon for producing CNTs. The results showed a high carbon yield of 32.21 wt% and a high degree of CNT purity at 93.04%.


Assuntos
Nanotubos de Carbono , Plásticos , Pirólise , Cinética , Termogravimetria
7.
Ren Fail ; 44(1): 1780-1790, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36285371

RESUMO

PURPOSE: Glomerular mesangial cell (GMC) dysfunction plays a vital role in the pathogenesis of diabetic kidney disease (DKD). Transient receptor potential canonical 6 (TRPC6) has been demonstrated to be involved in the development of DKD. However, the underlying mechanism remains unclear. The present study investigated the role of TRPC6 in GMC dysfunction and the related mechanism. METHODS: Diabetic rats and cultured GMCs were used in the experiment. The diabetic rat model was created by intraperitoneal injection of streptozotocin. Protein and mRNA levels were assessed by Western blotting and quantitative RT-PCR, respectively. Histological changes in the kidneys were observed by immunochemistry and hematoxylin and eosin. TRPC6 knockdown was achieved by adenovirus-mediated TRPC6 shRNA delivery in vivo and TRPC6 siRNA transfection in vitro. RESULTS: TRPC6 expression was increased in diabetic rat kidneys. Knockdown of TRPC6 attenuated diabetes-induced kidney functional deterioration. In addition, the increases in extracellular matrix components, including collagen IV, collagen I, and fibronectin production, as well as NFAT2 expression were also suppressed. In cultured GMCs, high glucose (25 mM, HG) treatment increased the expression of TRPC6. Knockdown of TRPC6 alleviated HG-induced increases in collagen IV, fibronectin, and NFAT2 expression. Knockdown of NFAT2 also inhibited the upregulation of proteins, including collagen IV and fibronectin, in HG-treated GMCs. CONCLUSION: These results demonstrate that inhibition of TRPC6/NFAT2 signaling attenuates GMC dysfunction and the development of DKD and suggest that pharmacological targeting of TRPC6/NFAT2 in GMCs may provide beneficial effects for DKD.


Assuntos
Diabetes Mellitus Experimental , Nefropatias Diabéticas , Ratos , Animais , Células Mesangiais , Nefropatias Diabéticas/genética , Nefropatias Diabéticas/metabolismo , Fibronectinas/metabolismo , Canal de Cátion TRPC6/genética , Canal de Cátion TRPC6/metabolismo , RNA Interferente Pequeno/metabolismo , Diabetes Mellitus Experimental/metabolismo , Estreptozocina , Hematoxilina/metabolismo , Hematoxilina/farmacologia , Amarelo de Eosina-(YS)/metabolismo , Amarelo de Eosina-(YS)/farmacologia , Linfócitos T , Glucose/metabolismo , RNA Mensageiro/metabolismo , Colágeno/metabolismo , Células Cultivadas
8.
Artigo em Inglês | MEDLINE | ID: mdl-35805773

RESUMO

Arsenic is widely present in nature and is a common environmental poison that seriously damages human health. Chronic exposure to arsenic is a major environmental poisoning factor that promotes cell proliferation and leads to malignant transformation. However, its molecular mechanism remains unclear. In this study, we found that arsenite can promote the transformation of immortalized human keratinocyte cells (HaCaT) from the G0/G1 phase to S phase and demonstrated malignant phenotypes. This phenomenon is accompanied by obviously elevated levels of NRF2, NQO1, Cyclin E, and Cyclin-dependent kinase 2 (CDK2). Silencing the NRF2 expression with small interfering RNA (siRNA) in arsenite-transformed (T-HaCaT) cells was shown to reverse the malignant phenotype. Furthermore, the siRNA silencing of NQO1 significantly decreased the levels of the cyclin E-CDK2 complex, inhibiting the G0/G1 to S phase cell cycle progression and transformation to the T-HaCaT phenotypes. Thus, we hypothesized that the NRF2/NQO1 pathway played a key role in the arsenite-induced malignancy of HaCaT cells. By increasing the expression of Cyclin E-CDK2, the NRF2/NQO1 pathway can affect cell cycle progression and cell proliferation. A new common health effect mechanism of arsenic carcinogenesis has been identified; thus, it would contribute to the development of novel treatments to prevent and treat skin cancer caused by arsenic.


Assuntos
Arsênio , Arsenitos , Arsênio/metabolismo , Linhagem Celular , Transformação Celular Neoplásica/induzido quimicamente , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Ciclina E/genética , Ciclina E/metabolismo , Ciclina E/farmacologia , Humanos , Queratinócitos , NAD(P)H Desidrogenase (Quinona)/metabolismo , NAD(P)H Desidrogenase (Quinona)/farmacologia , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , RNA Interferente Pequeno/metabolismo
9.
Sheng Wu Gong Cheng Xue Bao ; 38(3): 1086-1095, 2022 Mar 25.
Artigo em Chinês | MEDLINE | ID: mdl-35355476

RESUMO

ERα-36 is a novel subtype of estrogen receptor α which promotes tumor cell proliferation, invasion and drug resistance, and it serves as a therapeutic target. However, only small-molecule compounds targeting ERα-36 are under development as anticancer drugs at present. Gene therapy approach targeting ERα-36 can be explored using recombinant adenovirus armed with decoy receptor. The recombinant shuttle plasmid pDC316-Ig κ-ERα-36-Fc-GFP was constructed via genetic engineering to express an Ig κ-signaling peptide-leading secretory recombinant fusion protein ERα-36-Fc. The recombinant adenovirus Ad-ERα-36-Fc-GFP was subsequently packaged, characterized and amplified using AdMaxTM adenovirus packaging system. The expression of fusion protein and functional outcome of Ad-ERα-36-Fc-GFP transduction were further analyzed with triple-negative breast cancer MDA-MB-231 cells. Results showed that the recombinant adenovirus Ad-ERα-36-Fc-GFP was successfully generated. The virus effectively infected MDA-MB-231 cells which resulted in expression and secretion of the recombinant fusion protein ERα-36-Fc, leading to significant inhibition of EGFR/ERK signaling pathway. Preparation of the recombinant adenovirus Ad-ERα-36-Fc-GFP provides a basis for further investigation on cancer gene therapy targeting ERα-36.


Assuntos
Adenoviridae , Receptor alfa de Estrogênio , Adenoviridae/genética , Proliferação de Células , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Proteínas Recombinantes , Transfecção
10.
Insects ; 12(12)2021 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-34940141

RESUMO

Natural and anthropogenic changes have been altering many environmental factors. These include the amount of solar radiation reaching the Earth's surface. However, the effects of solar radiation on insect physiology have received little attention. As a pest for agriculture and horticulture, aphids are one of the most difficult pest groups to control due to their small size, high fecundity, and non-sexual reproduction. Study of the effects of UV-B radiation on aphid physiology may provide alternative control strategies in pest management. In this study, we examined the effects of UV-B radiation on protein and sugar contents, as well as the activities of protective enzymes, of the red and green morphs of the pea aphid over eight generations. The results indicated a significant interaction between UV-B radiation and aphid generations. Exposure of the pea aphids to UV-B radiation caused a significant decrease in the protein content and a significant increase in the glycogen and trehalose contents at each generation as measured in whole aphid bioassays. The enzyme activity of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) of the pea aphids changed significantly at each generation with UV-B treatments. The SOD activity increased over eight generations to the highest level at G7 generation. However, the enzyme activity of CAT first increased and then decreased with UV-B treatments, and POD mostly gradually decreased over the eight generations. Therefore, UV-B radiation is an environmental factor that could result in physiological changes of the pea aphid. Moreover, our study discovered that red and green aphids did not display a significant consistent difference in the response to the UV-B treatments. These results may prove useful in future studies especially for assessing their significance in the adaptation and management against UV-B radiation.

11.
Nanoscale ; 13(12): 5937-5953, 2021 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-33650605

RESUMO

Self-assembly at water-oil interfaces has been shown to be a cheap, convenient and efficient route to obtain densely packed layers of plasmonic nanoparticles which have small interparticle distances. This creates highly plasmonically active materials that can be used to give strong SERS enhancement and whose structure means that they are well suited to creating the highly stable, reproducible and uniform substrates that are needed to allow routine and accurate quantitative SERS measurements. A variety of methods have been developed to induce nanoparticle self-assembly at water-oil interfaces, fine tune the surface chemistry and adjust the position of the nanoparticles at the interface but only some of these are compatible with eventual use in SERS, where it is important that target molecules can access the active surface unimpeded. Similarly, it is useful to transform liquid plasmonic arrays into easy-to-handle free-standing solid films but these can only be used as solid SERS substrates if the process leaves the surface nanoparticles exposed. Here, we review the progress made in these research areas and discuss how these developments may lead towards achieving rational construction of tailored SERS substrates for sensitive and quantitative SERS analysis.

12.
Sci Total Environ ; 756: 143840, 2021 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-33261869

RESUMO

In arsenic toxicity, activation of the erythroid 2-related factor 2 (NRF2) pathway is regarded as a driver of cancer development and progression; however, the mechanisms by which NRF2 gene expression regulates cell cycle progression and mediates pathways of cellular proliferation and apoptosis in arsenic-induced lung carcinogenesis are poorly understood. In this study, we explored the regulatory functions of NRF2 expression and its target genes in immortalized human bronchial epithelial (HBE) cells continuously exposed to 1.0 µM sodium arsenite over approximately 43 passages (22 weeks). The experimental treatment induced malignant transformation in HBE cells, characterized by increased cellular proliferation and soft agar clone formation, as well as cell migration, and accelerated cell cycle progression from G0/G1 to S phase with increased levels of cyclin E-CDK2 complex,decreased cellular apoptosis rate. Moreover, we observed a sustained increase in NRF2 protein levels and those of its target gene products (NQO1, BCL-2) with concurrently decreased expression of apoptosis-related proteins (BAX, Cleaved-caspase-3/Caspase-3 and CHOP) and increased expression of the anti-apoptotic protein MCL-1. Silencing NRF2 expression with small interfering RNA (siRNA) in arsenite-transformed (T-HBE) cells was shown to reverse the malignant phenotype. Further, siRNA silencing of NQO1 significantly decreased levels of the cyclin E-CDK2 complex, inhibiting G0/G1 to S phase cell cycle progression and transformation to the T-HBE phenotypes. This study demonstrated a novel role for the NRF2/NQO1 signaling pathway in mediating arsenite-induced cell transformation by increasing the expression of cyclin E-CDK2, and accelerating the cell cycle and cell proliferation. Arsenite promotes activation of the NRF2/BCL-2 signaling pathway inhibited CHOP increasing cellular resistance to apoptosis and further promoting malignant transformation.


Assuntos
Arsenitos , Fator 2 Relacionado a NF-E2 , Apoptose , Arsenitos/toxicidade , Proliferação de Células , Transformação Celular Neoplásica/genética , Células Epiteliais , Humanos , Fator 2 Relacionado a NF-E2/genética
13.
Analyst ; 145(19): 6211-6221, 2020 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-32794527

RESUMO

Therapeutic drug monitoring (TDM) is important for many therapeutic regimens and has particular relevance for anticancer drugs which often have serious effects and whose optimum dosage can vary significantly between different patients. Many of the features of surface enhanced (resonance) Raman spectroscopy (SE(R)RS) suggest it should be very suitable for TDM of anticancer drugs and some initial studies which explore the potential of SE(R)RS for TDM of anticancer drugs have been published. This review brings this work together in an attempt to draw some general observations about key aspects of the approach, including the nature of the substrate used, matrix interference effects and factors governing adsorption of the target molecules onto the enhancing surface. There is now sufficient evidence to suggest that none of these pose real difficulties in the context of TDM. However, some issues, particularly the need to carry out multiplex measurements for TDM of combination therapies, have yet to be addressed.


Assuntos
Antineoplásicos , Monitoramento de Medicamentos , Adsorção , Humanos , Análise Espectral Raman , Vibração
14.
PLoS One ; 15(8): e0237098, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32745124

RESUMO

The EGFR-targeting cancer therapies are commonly facing drug resistance, mostly due to mutations. Gene therapy with artificial microRNA targeting EGFR conserved sequence may avoid such problem. In this study, we constructed a recombinant adenovirus expressing EGFR-targeting artificial microRNA and active revCASP3 (Ad-EC), under the control of tumor-specific SLPI promoter, and evaluated its inhibitory effect on HEP-2 cancer cells both in vitro and in vivo. MTT assay showed that cell growth inhibition rate at 72h was 44.0% in Ad-EC group at MOI 50, while the rate was 7.7% in the control virus Ad-GFP group and 3.6% in Cetuximab (500 µg/ml) group respectively. Flow cytometry analysis revealed the late apoptotic cells rate was 36.1% in Ad-EC group, significantly higher than 6.5% of Ad-GFP group (p < 0.001). When Ad-EC (MOI 50) was combined with CDDP (0.25 µg/ml), late apoptotic cells rate increased to 61.2%, significantly higher than each monotherapy group (P < 0.001). The real-time xCELLigence system recorded an effective cell growth inhibition in Ad-EC and CDDP groups, and more enhanced effect in Ad-EC plus CDDP group. Western blot revealed that Ad-EC could inhibit the activation of AKT pathway and ERK1/2 pathway, while Cetuximab had the AKT pathway over-activated. In vivo experiments with HEP-2 xenograft in nude mice confirmed the tumor inhibition in Ad-EC, CDDP and Ad-EC plus CDDP groups compared with PBS group (P < 0.01). Collectively, these data support the effective inhibition of cancer cells by this novel gene therapy strategy.


Assuntos
Caspase 3/metabolismo , Receptores ErbB/genética , MicroRNAs/genética , Neoplasias Experimentais/terapia , Terapêutica com RNAi/métodos , Adenoviridae/genética , Animais , Protocolos de Quimioterapia Combinada Antineoplásica , Apoptose , Caspase 3/genética , Linhagem Celular Tumoral , Proliferação de Células , Cetuximab/administração & dosagem , Cetuximab/uso terapêutico , Cisplatino/administração & dosagem , Cisplatino/uso terapêutico , Receptores ErbB/metabolismo , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , MicroRNAs/metabolismo , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Neoplasias Experimentais/tratamento farmacológico , Proteínas Proto-Oncogênicas c-akt/metabolismo
15.
BMC Res Notes ; 13(1): 321, 2020 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-32620172

RESUMO

OBJECTIVE: Palladin is a ubiquitous phosphoprotein expressed in vertebrate cells that works as a scaffolding protein. Several isoforms deriving from alternative splicing are originated from the palladin gene and involved in mesenchymal and muscle cells formation, maturation, migration, and contraction. Recent studies have linked palladin to the invasive spread of cancer and myogenesis. However, since its discovery, the promoter region of the palladin gene has never been studied. The objective of this study was to predict, identify, and measure the activity of the promoter regions of palladin gene. RESULTS: By using promoter prediction programs, we successfully identified the transcription start sites for the Palld isoforms and revealed the presence of a variety of transcriptional regulatory elements including TATA box, GATA, MyoD, myogenin, MEF, Nkx2-5, and Tcf3 upstream promoter regions. The transcriptome profiling approach confirmed the active role of predicted transcription factors in the mouse genome. This study complements the missing piece in the characterization of palladin gene and certainly contributes to understanding the complexity and enrollment of palladin regulatory factors in gene transcription.


Assuntos
Proteínas do Citoesqueleto/genética , Regiões Promotoras Genéticas , Animais , Linhagem Celular , Clonagem Molecular , Proteínas do Citoesqueleto/metabolismo , Camundongos , Desenvolvimento Muscular , Fibras Musculares Esqueléticas/metabolismo , Mioblastos Esqueléticos/metabolismo , Isoformas de Proteínas/genética , RNA-Seq
16.
Sheng Wu Gong Cheng Xue Bao ; 36(5): 969-978, 2020 May 25.
Artigo em Chinês | MEDLINE | ID: mdl-32567280

RESUMO

Drugs targeting immune checkpoint are used for cancer treatment, but resistance to single drug may occur. Combination therapy blocking multiple checkpoints simultaneously can improve clinical outcome. Therefore, we designed a recombinant protein rPC to block multiple targets, which consists of extracellular domains of programmed cell death protein 1 (PD-1) and cytotoxic T lymphocyte-associated antigen 4 (CTLA-4). The coding sequence was inserted into expression vector and stably transfected into HEK293 cells. The culture supernatant was collected and rPC was affinity-purified. Real-time quantitative PCR was used to evaluate the expression levels of ligands for PD-1 and CTLA-4 in several human cancer cell lines. The binding of rPC with cancer cells was examined by immunofluorescence cell staining, the influence of rPC on cancer cell growth was assayed by CCK-8. The results showed that rPC could be expressed and secreted by stably transfected HEK293 cells, the purified rPC could bind to lung cancer NCI-H226 cells which have high levels of ligands for PD-1 and CTLA-4, no direct impact on cancer cell growth could be observed by rPC treatment. The recombinant protein rPC can be functionally assayed further for developing novel immunotherapeutic drugs for cancer.


Assuntos
Neoplasias Pulmonares , Proteínas Recombinantes de Fusão , Animais , Antígeno CTLA-4/genética , Proliferação de Células , Células HEK293 , Humanos , Neoplasias Pulmonares/metabolismo , Receptor de Morte Celular Programada 1/genética , Ligação Proteica , Domínios Proteicos/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/isolamento & purificação , Proteínas Recombinantes de Fusão/metabolismo
17.
FASEB J ; 33(9): 9959-9973, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31199673

RESUMO

VEGF stimulates the formation of new blood vessels by inducing endothelial cell (EC) proliferation and migration. Brefeldin A (BFA)-inhibited guanine nucleotide-exchange protein (BIG)1 and 2 accelerate the replacement of bound GDP with GTP to activate ADP-ribosylation factor (Arf)1, which regulates vesicular transport between the Golgi and plasma membrane. Although it has been reported that treating cells with BFA interferes with Arf1 activation to inhibit VEGF secretion, the role of BIG1 and BIG2 in VEGF trafficking and expression, EC migration and proliferation, and vascular development remains unknown. Here, we found that inactivation of Arf1 reduced VEGF secretion but did not affect the levels of VEGF protein. Interestingly, however, BIG1 and BIG2 knockdown significantly decreased the levels of VEGF mRNA and protein in glioblastoma U251 cells and HUVECs. Furthermore, depletion of BIG1 and BIG2 inhibited HUVEC angiogenesis by diminishing cell migration. Angioblast migration and intersegmental vessel sprouting were also impaired when the BIG2 homolog, Arf guanine nucleotide exchange factor (arfgef)2, was knocked down in zebrafish with endothelial expression of green fluorescent protein (GFP). Depletion of arfgef2 by clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9 (Cas9) also caused defects in vascular development of zebrafish embryos. Taken together, these data reveal that BIG1 and BIG2 participate in endothelial cell angiogenesis.-Lu, F.-I., Wang, Y.-T., Wang, Y.-S., Wu, C.-Y., Li, C.-C. Involvement of BIG1 and BIG2 in regulating VEGF expression and angiogenesis.


Assuntos
Fatores de Troca do Nucleotídeo Guanina/fisiologia , Neovascularização Fisiológica/fisiologia , Fator A de Crescimento do Endotélio Vascular/biossíntese , Fator 1 de Ribosilação do ADP/antagonistas & inibidores , Fator 1 de Ribosilação do ADP/fisiologia , Animais , Sistemas CRISPR-Cas , Movimento Celular , Embrião não Mamífero/irrigação sanguínea , Desenvolvimento Embrionário , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Técnicas de Silenciamento de Genes , Genes Reporter , Fatores de Troca do Nucleotídeo Guanina/antagonistas & inibidores , Fatores de Troca do Nucleotídeo Guanina/genética , Células Endoteliais da Veia Umbilical Humana , Humanos , Neovascularização Fisiológica/genética , Interferência de RNA , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/farmacologia , Fator A de Crescimento do Endotélio Vascular/genética , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/fisiologia
18.
Int J Clin Exp Pathol ; 12(9): 3222-3234, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31934166

RESUMO

Epigallocatechin-3-gallate (EGCG) is a natural product with potential anti-cancer property whose direct target has not been identified. This study intended to investigate ERα36, a new isoform of estrogen receptor alpha (ERa), as a therapeutic target of EGCG in hepatocellular carcinoma (HCC). In this work, we examined the expression level of ERs in HCC cell lines and a normal human liver cell line, and evaluated inhibition effect of EGCG on these cells in vitro, and further on Hep3B in vivo. The results showed that ERα36 was the main ER in HCC cells and served as a biomarker of responsiveness to EGCG inhibition, and there was a positive correlation between ERα36 expression level and inhibitory effect of EGCG as indicated by IC50. In vivo experiments also showed dose-dependent inhibition of EGCG on ERα36 high-expressing Hep3B. EGCG exerted inhibition on Hep3B cells by both anti-proliferation and pro-apoptosis. ERα36-EGFR-Her-2 feedback loop, PI3K/Akt and MAPK/ERK pathways were inhibited, while caspase 3 was activated by EGCG in Hep3B cells, with p-ERK accumulated in cytoplasm. The inhibitory effect of EGCG was significantly attenuated when ERα36 was pre-activated. This is the first evidence that EGCG exerts its anti-cancer effect by inhibiting ERα36, followed with inhibition of the ERα36-EGFR-Her-2 feedback loop and PI3K/Akt, MAPK/ERK pathway, activation of caspase 3, and accumulation of p-ERK in cytoplasm. It suggests that ERα36 might be an efficient target of EGCG in HCC.

19.
Oncotarget ; 8(50): 87209-87220, 2017 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-29152075

RESUMO

Chemotherapy is an important treatment for cancer patients, especially for those with unresectable lesions. Targeted therapy of cancer by specific inhibition of aberrant tyrosine kinase activities in cancer cells with chemically synthesized tyrosine kinase inhibitors (TKIs), shows better responses while less side effects than traditional chemotherapeutic drugs. It is common that cancer cells often exhibit deregulation of several tyrosine kinases simultaneously, multikinase TKIs (MKIs) therefore have greater advantages over single-target TKIs. Currently more MKIs are under developing for better efficacy for different types of cancer. In the present work, we evaluated the in vitro therapeutic potential of a novel MKI, namely R8, with comparison to the clinically available MKI Sunitinib. Results showed that R8 has stronger inhibition on six different types of cancer cell lines with lower IC50 than Sunitinib does. Cell cycle analysis showed that R8 induced significant G0/G1 arrest phase of lung cancer A549 and NCI-H226 cells. The inhibition was also confirmed by colony formation and migration assays in both lung cancer cell lines in a dose-dependent manner. R8 could significantly inhibit the phosphorylation of multiple receptor tyrosine kinases (RTKs) included PDGFRß, VEGFR2, EGFR and C-Kit, leading to the down-regulation of PI3K-Akt-mTOR signaling. Further analysis revealed that R8 treatment induced more significant apoptosis than Sunitinib did, which might be the consequence of the autophagic cell death. In conclusion, this work suggested R8 to be a promising novel anticancer MKI, and provided the basis for further in vivo investigation on its potential in treatment of lung cancer.

20.
Drug Des Devel Ther ; 11: 2431-2441, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28860714

RESUMO

Severe side effects are major problems with chemotherapy of gastric cancer (GC). These side effects can be reduced by using sensitizing agents in combination with therapeutic drugs. In this study, the low/nontoxic dosage of glaucocalyxin B (GLB) was used with other DNA linker agents mitomycin C (MMC), cisplatin (DDP), or cyclophosphamide (CTX) to treat GC cells. Combined effectiveness of GLB with drugs was determined by proliferation assay. The molecular mechanisms associated with cell proliferation, migration, invasion, cell cycle, DNA repair/replication, apoptosis, and autophagy were investigated by immunoblotting for key proteins involved. Cell cycle and apoptosis analysis were performed by flow cytometry. Reactive oxygen species level was also examined for identification of its role in apoptosis. Proliferation assay revealed that the addition of 5 µM GLB significantly sensitizes gastric cancer SGC-7901 cells to MMC, DDP, and CTX by decreasing half-maximal inhibitory concentration (IC50) by up to 75.40%±5%, 45.10%±5%, and 52.10%±5%, respectively. GLB + drugs decreased the expression level of proteins involved in proliferation and migration, suggesting the anticancer potential of GLB + drugs. GLB + MMC, GLB + CTX, and GLB + DDP arrest the cells in G0/G1 and G1/S phase, respectively, which may be the consequence of significant decrease in the level of enzymes responsible for DNA replication and telomerase shortening. Combined use of GLB with these drugs also induces DNA damage and apoptosis by activating caspase/PARP pathways and increased production of reactive oxygen species and increased autophagy in GC cells. GLB dosage sensitizes GC cells to the alkylating agents via arresting the cell cycle and enhancing cell death. This is of significant therapeutic importance in the reduction of side effects associated with these drugs.


Assuntos
Antineoplásicos/farmacologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Diterpenos do Tipo Caurano/farmacologia , Neoplasias Gástricas/tratamento farmacológico , Alquilantes/administração & dosagem , Alquilantes/farmacologia , Antineoplásicos/administração & dosagem , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cisplatino/administração & dosagem , Cisplatino/farmacologia , Ciclofosfamida/administração & dosagem , Ciclofosfamida/farmacologia , Dano ao DNA , Diterpenos do Tipo Caurano/administração & dosagem , Relação Dose-Resposta a Droga , Citometria de Fluxo , Humanos , Concentração Inibidora 50 , Mitomicina/administração & dosagem , Mitomicina/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Neoplasias Gástricas/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA