Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Neuroreport ; 35(7): 486-498, 2024 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-38526939

RESUMO

This study aimed to investigate the effects of SIRT1 modulation on heroin addiction-like behavior and its possible biological mechanisms. Wild-type C57BL/6J and Sirt1loxp/loxp D1-Cre mice were used in this experiment, and Sirt1 loxp/loxp D1-Cre(-) mice were used as a control for conditional knockout mice. Mice were divided into saline control and heroin-dependent groups. Behavioral methods were used to record the withdrawal response, conditioned place preference (CPP) changes, and open field test results. Transmission electron microscopy (TEM) was used to observe the structure of autophagosomes in nucleus accumbens (NAc) neurons. The expression of SIRT1 and autophagy-related proteins and genes, such as LC3Ⅱ, ATG5 , and ATG7 , was detected in the NAc of each mouse group via western blot, real-time quantitative PCR (qPCR) analyzes, and immunofluorescence. The results of this experiment showed that compared with the saline group, mice in the wild-type heroin-dependent group showed marked withdrawal symptoms, with more autophagosomes observed in NAc via TEM. Compared with wild-type and Sirt1loxp/loxp D1-Cre(-) heroin-dependent groups, CPP formation was found to be reduced in the conditional knockout mouse group, with a significant decrease in spontaneous activity. Western blot, qPCR, and immunofluorescence results indicated that the expression of LC3Ⅱ, ATG-5, and ATG-7 was significantly reduced in the NAc of the Sirt1loxp/loxp D1-Cre(+) group. It was still, however, higher than that in the saline control group. These results suggest that inhibition of Sirt1 expression may prevent heroin-induced addiction-related behaviors via reducing D1 neuronal autophagy.


Assuntos
Dependência de Heroína , Núcleo Accumbens , Camundongos , Animais , Dependência de Heroína/metabolismo , Heroína , Sirtuína 1/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Autofagia
2.
Redox Biol ; 70: 103059, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38316066

RESUMO

Reactive oxygen species (ROS) play a pivotal role in macrophage-mediated acute inflammation. However, the precise molecular mechanism by which ROS regulate macrophage polarization remains unclear. Here, we show that ROS function as signaling molecules that regulate M1 macrophage polarization through ataxia-telangiectasia mutated (ATM) and cell cycle checkpoint kinase 2 (Chk2), vital effector kinases in the DNA damage response (DDR) signaling pathway. We further demonstrate that Chk2 phosphorylates PKM2 at the T95 and T195 sites, promoting glycolysis and facilitating macrophage M1 polarization. In addition, Chk2 activation increases the Chk2-dependent expression of p21, inducing cell cycle arrest for subsequent macrophage M1 polarization. Finally, Chk2-deficient mice infected with lipopolysaccharides (LPS) display a significant decrease in lung inflammation and M1 macrophage counts. Taken together, these results suggest that inhibiting the ROS-Chk2 axis can prevent the excessive inflammatory activation of macrophages, and this pathway can be targeted to develop a novel therapy for inflammation-associated diseases and expand our understanding of the pathophysiological functions of DDR in innate immunity.


Assuntos
Ataxia Telangiectasia , Proteínas Serina-Treonina Quinases , Animais , Camundongos , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Ciclo Celular/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Fosforilação , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Proteínas de Ligação a DNA/genética , Ciclo Celular , Macrófagos/metabolismo , Inflamação
3.
Oncogene ; 43(2): 92-105, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37952080

RESUMO

Several studies have demonstrated the role of the oncogenic mutant p53 in promoting tumor progression; however, there is limited information on the effects of secreted oncogenic mutant p53 on the tumor microenvironment and tumor immune escape. In this study, we found that secretion of mutant p53, determined by exosome content, is dependent on its N-terminal dileucine motif via its binding to ß-adaptin, and inhibited by the CHK2-mediated-Ser 20 phosphorylation. Moreover, we observed that the mutant p53 caused downregulation and dysfunction of CD4+ T lymphocytes in vivo and downregulated the levels and activities of rate-limiting glycolytic enzymes in vitro. Furthermore, inhibition of mutant p53 secretion by knocking down AP1B1 or mutation of dileucine motif could reverse the quantity and function of CD4+ T lymphocytes and restrain the tumor growth. Our study demonstrates that the tumor-derived exosome-mediated secretion of oncogenic mutant p53 inhibits glycolysis to alter the immune microenvironment via functional suppression of CD4+ T cells, which may be the underlying mechanism for tumor immune escape. Therefore, targeting TDE-mediated p53 secretion may serve as a potential therapeutic target for cancer treatment.


Assuntos
Neoplasias , Proteína Supressora de Tumor p53 , Humanos , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Microambiente Tumoral/genética , Linfócitos T/metabolismo , Mutação , Neoplasias/genética , Linhagem Celular Tumoral , Complexo 1 de Proteínas Adaptadoras/genética , Complexo 1 de Proteínas Adaptadoras/metabolismo , Subunidades beta do Complexo de Proteínas Adaptadoras/genética , Subunidades beta do Complexo de Proteínas Adaptadoras/metabolismo
4.
Commun Biol ; 6(1): 1252, 2023 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-38081915

RESUMO

We report that autophagy-related gene 7 (ATG7) modulates p53 activity to regulate cell cycle and survival during metabolic stress, and that indicates Atg7 is functionally involved in cellular homeostasis in autophagy independent fashion. As a protein translation inhibitor, Programmed cell death 4 (PDCD4) expression is regulated by AKT1 phosphorylation. Here, we find that Atg7 interacts with PDCD4 and AKT1 to regulate AKT1-PDCD4 phosphorylation-ubiquitination axis during metabolic stress. We demonstrate that Atg7 senses decrease of ATP levels to suppress AKT-mediated PDCD4 phosphorylation at Ser67, which inhibits PDCD4 ubiquitinating during metabolic stress. Finally, PDCD4 accumulates and functions as a protein translation inhibitor to conserve energy, thus reducing apoptosis and allowing cells to survive stress periods. These results suggest that the ATP-Atg7-PDCD4 axis acts as a metabolic adaptation pathway which dictates cells to overcome metabolic stress.


Assuntos
Proteínas Reguladoras de Apoptose , Proteínas Proto-Oncogênicas c-akt , Proteínas Reguladoras de Apoptose/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosforilação , Proteínas de Ligação a RNA/metabolismo , Ubiquitinação , Estresse Fisiológico , Trifosfato de Adenosina/metabolismo
5.
Front Oncol ; 13: 1207896, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37886175

RESUMO

Backgrounds: The impact of immediate implant-based breast reconstruction (IBBR) on the delivery of radiotherapy plans remains controversial. This study aimed to compare the differences in radiotherapy dosimetry, complications of radiotherapy, and quality of life in patients who underwent modified radical mastectomy combined with or without IBBR. Methods: We retrospectively collected 104 patients with breast cancer who underwent intensity-modulated radiation therapy after modified radical mastectomy with IBBR (n =46) or not (n =58) from January 2017 to December 2021. The dosimetric differences in radiotherapy of planning target volume (PTV) and organs at risk and the differences in complications of radiotherapy between the two groups were compared. We also applied the functional assessment of cancer therapy-breast cancer (FACT-B) score to compare the difference in quality of life. The chi-square test and independent samples t-test were used to analyze the above data. Results: IBBR group was associated with higher PTV volumes, PTV D98, V95, and lower PTV Dmean, D2 compared with the non-reconstruction group (P<0.05). IBBR group also had lower radiotherapy dosimetric parameters in the ipsilateral lung and the heart of left breast cancer patients. The differences in the rates of radiation pneumonia (RP) and radiation dermatitis (RD) between the two groups were not statistically significant (P > 0.05). Moreover, FACT-B scores at 6 months after radiotherapy in patients with IBBR were higher than those without reconstruction (P < 0.05). Conclusion: Patients with IBBR achieved better radiation dosimetry distribution and higher quality of life without more complications of radiotherapy.

6.
Oncogene ; 42(22): 1843-1856, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37081042

RESUMO

Oncogenic stress induces DNA damage repair (DDR) that permits escape from mitotic catastrophe and allows early precursor lesions during the evolution of cancer. SAMHD1, a dNTPase protecting cells from viral infections, has been recently found to participate in DNA damage repair process. However, its role in tumorigenesis remains largely unknown. Here, we show that SAMHD1 is up-regulated in early-stage human carcinoma tissues and cell lines under oxidative stress or genotoxic insults. We further demonstrate that de-ubiquitinating enzyme USP7 interacts with SAMHD1 and de-ubiquitinates it at lysine 421, thus stabilizing SAMHD1 protein expression for further interaction with CtIP for DDR, which promotes tumor cell survival under genotoxic stress. Furthermore, SAMHD1 levels positively correlates with USP7 in various human carcinomas, and is associated with an unfavorable survival outcome in patients who underwent chemotherapy. Moreover, USP7 inhibitor sensitizes tumor cells to chemotherapeutic agents by decreasing SAMHD1 in vitro and in vivo. These findings suggest that de-ubiquitination of SAMHD1 by USP7 promotes DDR to overcome oncogenic stress and affect chemotherapy sensitivity.


Assuntos
Dano ao DNA , Reparo do DNA , Humanos , Peptidase 7 Específica de Ubiquitina/genética , Proteína 1 com Domínio SAM e Domínio HD/genética , Ubiquitinação
7.
Int J Biol Sci ; 17(14): 4047-4059, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34671219

RESUMO

The faithful DNA replication is a critical event for cell survival and inheritance. However, exogenous or endogenous sources of damage challenge the accurate synthesis of DNA, which causes DNA lesions. The DNA lesions are obstacles for replication fork progression. However, the prolonged replication fork stalling leads to replication fork collapse, which may cause DNA double-strand breaks (DSB). In order to maintain genomic stability, eukaryotic cells evolve translesion synthesis (TLS) and template switching (TS) to resolve the replication stalling. Proliferating cell nuclear antigen (PCNA) trimer acts as a slide clamp and encircles DNA to orchestrate DNA synthesis and DNA damage tolerance (DDT). The post-translational modifications (PTMs) of PCNA regulate these functions to ensure the appropriate initiation and termination of replication and DDT. The aberrant regulation of PCNA PTMs will result in DSB, which causes mutagenesis and poor response to chemotherapy. Here, we review the roles of the PCNA PTMs in DNA duplication and DDT. We propose that clarifying the regulation of PCNA PTMs may provide insights into understanding the development of cancers.


Assuntos
Carcinogênese , Dano ao DNA , Replicação do DNA , Antígeno Nuclear de Célula em Proliferação/metabolismo , Processamento de Proteína Pós-Traducional , Humanos
8.
Int Immunopharmacol ; 101(Pt B): 108229, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34717195

RESUMO

BACKGROUND: Increasing evidence suggests that long non-coding RNAs (lncRNAs) affect the regulation of immune responses, airway inflammation, and other pathological processes involved in asthma. LncRNA PTTG3P is associated with the development of various tumors, but its role in childhood asthma remains unknown. In this study, we investigated the functions of the lncRNA PTTG3P in the progression of childhood asthma. METHODS: Twenty-six healthy children and 26 asthmatic children were monitored for disease progression for 2 years. We obtained blood samples during the chronic phase of disease for lncRNA/mRNA expression microarray analysis. A competitive endogenous RNA network (PTTG3P/miR-192-3p/CCNB1) was identified using bioinformatics analyses. Real-time qPCR and western blot were used to quantify gene and protein expression levels, respectively. Cell counting kit­8 and transwell assays were used to evaluate the proliferation and migration of bronchial epithelial (16HBE) cells. Double luciferase reporter gene assay was used to validate the predictive targets in PTTG3P, miR-192-3p, and CCNB1. RESULTS: PTTG3P was highly expressed in the peripheral blood of asthmatic children. Knocking down PTTG3P inhibited epithelial-mesenchymal transition, proliferation, and migration of 16HBE cells. PTTG3P promoted progression of childhood asthma by targeting the miR-192-3p/CCNB1 axis. CONCLUSIONS: Childhood asthma was associated with the PTTG3P/miR-192-3p/CCNB1 axis. This study provides potential diagnostic and treatment biomarkers for childhood asthma.


Assuntos
Asma/genética , Ciclina B1/metabolismo , Predisposição Genética para Doença , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , Criança , Ciclina B1/genética , Feminino , Marcadores Genéticos , Humanos , Masculino , MicroRNAs/genética
9.
J Cell Mol Med ; 25(11): 5001-5014, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33960626

RESUMO

Asthma is a chronic airway disease that causes excessive inflammation, oxidative stress, mucus production and bronchial epithelial cell apoptosis. Fructose-1,6-bisphosphatase (Fbp1) is one of the rate-limiting enzymes in gluconeogenesis and plays a critical role in several cancers. However, its role in inflammatory diseases, such as asthma, is unclear. Here, we examined the expression, function and mechanism of action of Fbp1 in asthma. Gene Expression Omnibus (GEO) data sets revealed that Fbp1 was overexpressed in a murine model of asthma and in interleukin (IL)-4- or IL-13-stimulated bronchial epithelial cells. We confirmed the findings in an animal model as well as Beas-2B and 16HBE cells. In vitro investigations revealed that silencing of Fbp1 reduced apoptosis and the proportion of cells in the G2/M phase, whereas overexpression led to increases. Fbp1 knock-down inhibited oxidative stress by activating the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway, whereas Fbp1 overexpression aggravated oxidative stress by suppressingthe Nrf2 pathway. Moreover, the Nrf2 pathway inhibitor ML385 reversed the changes caused by Fbp1 inhibition in Beas-2B and 16HBE cells. Collectively, our data indicate that Fbp1 aggravates oxidative stress-induced apoptosis by suppressing Nrf2 signalling, substantiating its potential as a novel therapeutic target in asthma.


Assuntos
Asma/patologia , Frutose-Bifosfatase/metabolismo , Regulação da Expressão Gênica , Fator 2 Relacionado a NF-E2/antagonistas & inibidores , Ovalbumina/toxicidade , Estresse Oxidativo , Animais , Asma/induzido quimicamente , Asma/metabolismo , Feminino , Frutose-Bifosfatase/genética , Camundongos , Camundongos Endogâmicos BALB C , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo
10.
Front Genet ; 12: 634162, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33763115

RESUMO

RNA N6-methyladenosine (m6A) regulators play important roles in a variety of biological functions. Nonetheless, the roles of m6A regulators in childhood asthma remain unknown. In this study, 11 significant m6A regulators were selected using difference analysis between non-asthmatic and asthmatic patients from the Gene Expression Omnibus GSE40888 dataset. The random forest model was used to screen five candidate m6A regulators (fragile X mental retardation 1, KIAA1429, Wilm's tumor 1-associated protein, YTH domain-containing 2, and zinc finger CCCH domain-containing protein 13) to predict the risk of childhood asthma. A nomogram model was established based on the five candidate m6A regulators. Decision curve analysis indicated that patients could benefit from the nomogram model. The consensus clustering method was performed to differentiate children with asthma into two m6A patterns (clusterA and clusterB) based on the selected significant m6A regulators. Principal component analysis algorithms were constructed to calculate the m6A score for each sample to quantify the m6A patterns. The patients in clusterB had higher m6A scores than those in clusterA. Furthermore, we found that the patients in clusterA were linked to helper T cell type 1 (Th1)-dominant immunity while those in clusterB were linked to Th2-dominant immunity. In summary, m6A regulators play nonnegligible roles in the occurrence of childhood asthma. Our investigation of m6A patterns may be able to guide future immunotherapy strategies for childhood asthma.

11.
Int J Biol Sci ; 15(3): 507-521, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30745838

RESUMO

Proliferative vitreoretinopathy (PVR) is the most serious fibrous complication that causes vision loss after intraocular surgery, and there is currently no effective treatment in clinical. Autophagy is an important cell biological mechanism in maintaining the homeostasis of tissues and cells, resisting the process of EMT. However, it is still unclear whether autophagy could resist intraocular fibrosis and prevent PVR progression. In this study, we investigated the expression of mesenchymal biomarkers in autophagy deficiency cells and found these proteins were increased. The mesenchymal protein transcription factor Twist can bind to autophagy related protein p62 and promote the degradation of Twist, which reduced the expression of mesenchymal markers. By constructing an EMT model of retinal pigment epithelial (RPE) cells in vitro, we found that autophagy was activated in the EMT process of RPE cells. Moreover, in autophagy deficient RPE cell line via knockdown autophagy related protein 7 (Atg7), the expression of epithelial marker claudin-1 was suppressed and the mesenchymal markers were increased, accompanied by an increase in cell migration and contractility. Importantly, RPE epithelial properties can be maintained by promoting autophagy and effectively reversing TFG-ß2-induced RPE fibrosis. These observations reveal that autophagy may be an effective way to treat PVR.


Assuntos
Transição Epitelial-Mesenquimal/fisiologia , Epitélio Pigmentado da Retina/metabolismo , Animais , Autofagia/fisiologia , Proteína 7 Relacionada à Autofagia/genética , Proteína 7 Relacionada à Autofagia/metabolismo , Biomarcadores/metabolismo , Western Blotting , Linhagem Celular , Claudina-1/genética , Claudina-1/metabolismo , Transição Epitelial-Mesenquimal/genética , Fibrose/genética , Fibrose/metabolismo , Homeostase/fisiologia , Imuno-Histoquímica , Imunoprecipitação , Camundongos , Camundongos Knockout
12.
Front Med ; 11(2): 266-276, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28500430

RESUMO

Childhood obesity and obesity-related metabolic complications are induced by a high-fat postnatal diet. The lack of a suitable animal model, however, remains a considerable challenge in obesity studies. In the current study, we provided high-fat diet (HFD) to dams during lactation and to pups after weaning. We also developed a novel model of C57BL/6J mouse pups with HFD-induced postnatal obesity. Results showed that feeding with HFD induces fat deposition and obesity in pups. Furthermore, HFD more potently increased the body weight (BW) of male than female pups. HFD-fed female pups were obese, underwent precocious puberty, and showed increased kisspeptin expression in the hypothalamus. However, parental obesity and precocious puberty exerted no synergistic effects on the HFD-induced postnatal weight gain and puberty onset of the pups. Interestingly, some HFD-fed litters with normal BW also exhibited precocious puberty. This finding suggested that diet composition but not BW triggers puberty onset. Our model suggests good construction validity of obesity and precocious puberty. Furthermore, our model can also be used to explore the mutual interactions between diet-induced postnatal childhood obesity and puberty.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Obesidade/etiologia , Puberdade Precoce/etiologia , Animais , Animais Recém-Nascidos , Feminino , Kisspeptinas/metabolismo , Lactação , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Maturidade Sexual , Desmame , Aumento de Peso
13.
Chemosphere ; 163: 81-89, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27521642

RESUMO

In this study, an effective defluoridation adsorbent was developed by depositing polypyrrole (PPy) on granular peanut shell biological carbon (BC) via in situ chemical oxidative polymerization. The variables of defluoridation process (i.e., adsorbent dosage, fluoride solution pH, and anionic interference) were tested. The mechanism was determined by isotherm and kinetic studies, Brunauer-Emmett-Teller (BET) method, scanning electronic microscopy (SEM), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared (FTIR) spectroscopy and automatic titration. The PPy-grafted BC (PPy/BC) composite performed commendably from pH 2.0 to 10.0, and exhibited high selectivity for fluoride in the presence of several co-existing anions. The experimental data were described well by a Langmuir isotherm curve, and the maximum adsorption capacity was 17.15 mg g(-1). Kinetic studies illustrated the adsorption process was accomplished via surface adsorption as well as by intraparticle diffusion. In addition, mesoporous diffusion was the rate-controlling step in intraparticle diffusion process. BET and SEM analysis revealed the sponge-like polymer adhered to the BC and plugged the pores. XPS, FTIR, and SEM confirmed that fluoride removal was accomplished via the replacement of doped ionizable chloride ions (Cl(-)) coupled with positively charged nitrogen (N(+)), computation of XPS data enabled the formulation of a three-layer-deep hypothesis for PPy.


Assuntos
Carbono/química , Recuperação e Remediação Ambiental/métodos , Fluoretos/química , Polímeros/química , Pirróis/química , Poluentes Químicos da Água/química , Adsorção , Arachis/química , Difusão , Concentração de Íons de Hidrogênio , Cinética , Microscopia Eletrônica de Varredura , Fosfatos/química , Espectroscopia Fotoeletrônica , Espectroscopia de Infravermelho com Transformada de Fourier
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA