RESUMO
Synthetic DNAzyme-based structures enable dynamic cell regulation. However, engineering an effective and targeted DNAzyme-based structure to perform customizable multistep regulation remains largely unexplored. Herein, we designed a membrane-anchored DNAzyme-based molecular machine to implement dynamic inter- and intracellular cascade regulation, which realizes efficient T-cell/cancer cell interactions and subsequent receptor mediated cancer cell uptake. Using CD8+ T-cells and HeLa cancer cells as a proof of concept, we demonstrate that the designed DNAzyme-based molecular machine enables customized cascade regulation including (1) specific recognition between T-cells and cancer cells, (2) specific response and fluorescence sensing upon extracellular stimuli, and (3) cascade regulation including intercellular distance shortening, cell-cell communication, and intracellular delivery of anticancer drugs. Together, this work provides a promising pathway for customized cascade cell regulation based on a DNAzyme-based molecular machine, which enables enhanced cancer therapy by combining T-cell immunotherapy and chemotherapy.
RESUMO
Lamiales, comprising over 23,755 species across 24 families, stands as a highly diverse and prolific plant group, playing a significant role in the cultivation of horticultural, ornamental, and medicinal plant varieties. Whole-genome duplication (WGD) and its subsequent post-polyploid diploidization (PPD) process represent the most drastic type of karyotype evolution, injecting significant potential for promoting the diversity of this lineage. However, polyploidization histories, as well as genome and subgenome fractionation following WGD events in Lamiales species, are still not well investigated. In this study, we constructed a chromosome-level genome assembly of Lindenbergia philippensis (Orobanchaceae) and conducted comparative genomic analyses with 14 other Lamiales species. L. philippensis is positioned closest to the parasitic lineage within Orobanchaceae and has a conserved karyotype. Through a combination of Ks analysis and syntenic depth analysis, we reconstructed and validated polyploidization histories of Lamiales species. Our results indicated that Primulina huaijiensis underwent three rounds of diploidization events following the γ-WGT event, rather than two rounds as reported. Besides, we reconfirmed that most Lamiales species shared a common diploidization event (L-WGD). Subsequently, we constructed the Lamiales Ancestral Karyotype (LAK), comprising 11 proto-chromosomes, and elucidated its evolutionary trajectory, highlighting the highly flexible reshuffling of the Lamiales paleogenome. We identified biased fractionation of subgenomes following the L-WGD event across eight species, and highlighted the positive impacts of non-WGD genes on gene family expansion. This study provides novel genomic resources and insights into polyploidy and karyotype remodeling of Lamiales species, essential for advancing our understanding of species diversification and genome evolution.
RESUMO
Microplastics (MPs) and okadaic acid (OA) are known to coexist in marine organisms, potentially impacting humans through food chain. However, the combined toxicity of OA and MPs remains unknown. In this study, mice were orally administered OA at 200⯵g/kg bw and MPs at 2â¯mg/kg bw. The co-exposure group showed a significant increase in malondialdehyde (MDA) content and significant decreases in superoxide dismutase (SOD) activity and glutathione (GSH) level compared to the control, MPs and OA groups (p < 0.05). Additionally, the co-exposure group exhibited significantly higher levels of IL-1ß and IL-18 compared to other groups (p < 0.05). These results demonstrated that co-exposure to MPs and OA induces oxidative stress and exacerbates inflammation. Histological and cellular ultrastructure analyses suggested that this combined exposure may enhance gut damage and compromise barrier integrity. Consequently, the concentration of OA in the small intestine of the co-exposure group was significantly higher than that in the OA group. Furthermore, MPs were observed in the lamina propria of the gut in the co-exposure group. Transcriptomic analysis revealed that the co-exposure led to increased expression of certain genes related to the NF-κB/NLRP3 pathway compared to the OA and MPs groups. Overall, this combined exposure may disrupt the intestinal barrier, and promote inflammation through the NF-κB/NLRP3 pathway. These findings provide precious information for the understanding of health risks associated with MPs and phycotoxins.
Assuntos
Intestino Delgado , Microplásticos , Ácido Okadáico , Estresse Oxidativo , Poliestirenos , Animais , Microplásticos/toxicidade , Camundongos , Ácido Okadáico/toxicidade , Intestino Delgado/efeitos dos fármacos , Intestino Delgado/patologia , Intestino Delgado/ultraestrutura , Poliestirenos/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Malondialdeído/metabolismo , Masculino , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Glutationa/metabolismo , Superóxido Dismutase/metabolismo , Poluentes Químicos da Água/toxicidadeRESUMO
Cell-substrate interaction plays a critical role in determining the mechanical status of living cell membrane. Changes of substrate surface properties can significantly alter the cell mechanical microenvironment, leading to mechanical changes of cell membrane. However, it is still difficult to accurately quantify the influence of the substrate surface properties on the mechanical status of living cell membrane without damage. This study addresses the challenge by using an electrochemical sensor made from an ultrasmall quartz nanopipette. With the tip diameter less than 100 nm, the nanopipette-based sensor achieves highly sensitive, noninvasive and label-free monitoring of the mechanical status of single living cells by collecting stable cyclic membrane oscillatory signals from continuous current versus time traces. The electrochemical signals collected from PC12 cells cultured on three different substrates (bare ITO (indium tin oxides) glass, hydroxyl modified ITO glass, amino modified ITO glass) indicate that the microenvironment more favorable for cell adhesion can increase the membrane stiffness. This work provides a label-free electrochemical approach to accurately quantify the mechanical status of single living cells in real-time, which may help to better understand the relationship between the cell membrane and the extra cellular matrix.
Assuntos
Técnicas Biossensoriais , Membrana Celular , Técnicas Eletroquímicas , Compostos de Estanho , Técnicas Biossensoriais/instrumentação , Técnicas Biossensoriais/métodos , Animais , Ratos , Células PC12 , Compostos de Estanho/química , Técnicas Eletroquímicas/métodos , Membrana Celular/química , Adesão Celular , Vibração , Propriedades de Superfície , Desenho de EquipamentoRESUMO
Diuron (N-(3,4-dichlorophenyl)-N,Ndimethylurea, DCMU), a ureic herbicide, is extensively used in agriculture to boost crop productivity; however, its extensive application culminates in notable environmental pollution, especially in aquatic habitats. Therefore, the present study investigated the effect of diuron on the dinoflagellate Alexandrium pacificum, which is known to induce harmful algal blooms (HAB), and its potential to biodegrade DCMU. Following a four-day DCMU exposure, our results revealed that A. pacificum proficiently assimilated DCMU at concentrations of 0.05 mg/L and 0.1 mg/L in seawater, attaining a complete reduction (100 % efficiency) after 96 h for both concentrations. Moreover, evaluations of paralytic shellfish toxins content indicated that cells subjected to higher DCMU concentrations (0.1 mg/L) exhibited reductions of 73.4 %, 86.7 %, and 75 % in GTX1, GTX4, and NEO, respectively. Exposure to DCMU led to a notable decrease in A. pacificum's photosynthetic efficacy, accompanied by increased levels of reactive oxygen species (ROS) and suppressed cell growth, with a growth inhibition rate of 41.1 % at 72 h. Proteomic investigations pinpointed the diminished expression levels of specific proteins like SxtV and SxtW, linked to paralytic shellfish toxins (PSTs) synthesis, as well as key proteins associated with Photosystem II, namely PsbA, PsbD, PsbO, and PsbU. Conversely, proteins central to the cysteine biosynthesis pathways exhibited enhanced expression. In summary, our results preliminarily resolved the molecular mechanisms underlying the response of A. pacificum to DCMU and revealed that DCMU affected the synthesis of PSTs. Meanwhile, our data suggested that A. pacificum has great potential in scavenging DCMU.
Assuntos
Dinoflagellida , Intoxicação por Frutos do Mar , Humanos , Diurona/toxicidade , Proteômica , Dinoflagellida/fisiologia , Proliferação Nociva de AlgasRESUMO
BACKGROUND: Conus, a highly diverse species of venomous predators, has attracted significant attention in neuroscience and new drug development due to their rich collection of neuroactive peptides called conotoxins. Recent advancements in transcriptome, proteome, and genome analyses have facilitated the identification of conotoxins within Conus' venom glands, providing insights into the genetic features and evolutionary patterns of conotoxin genes. However, the underlying mechanism behind the extraordinary hypervariability of conotoxins remains largely unknown. RESULTS: We analyzed the transcriptomes of 34 Conus species, examining various tissues such as the venom duct, venom bulb, and salivary gland, leading to the identification of conotoxin genes. Genetic variation analysis revealed that a subset of these genes (15.78% of the total) in Conus species underwent positive selection (Ka/Ks > 1, p < 0.01). Additionally, we reassembled and annotated the genome of C. betulinus, uncovering 221 conotoxin-encoding genes. These genes primarily consisted of three exons, with a significant portion showing high transcriptional activity in the venom ducts. Importantly, the flanking regions and adjacent introns of conotoxin genes exhibited a higher prevalence of transposon elements, suggesting their potential contribution to the extensive variability observed in conotoxins. Furthermore, we detected genome duplication in C. betulinus, which likely contributed to the expansion of conotoxin gene numbers. Interestingly, our study also provided evidence of introgression among Conus species, indicating that interspecies hybridization may have played a role in shaping the evolution of diverse conotoxin genes. CONCLUSIONS: This study highlights the impact of adaptive evolution and introgressive hybridization on the genetic diversity of conotoxin genes and the evolution of Conus. We also propose a hypothesis suggesting that transposable elements might significantly contribute to the remarkable diversity observed in conotoxins. These findings not only enhance our understanding of peptide genetic diversity but also present a novel approach for peptide bioengineering.
Assuntos
Conotoxinas , Caramujo Conus , Animais , Conotoxinas/genética , Caramujo Conus/genética , Peptídeos/genética , Genoma , GenômicaRESUMO
Oxidative stress is involved in various signaling pathways and serves a key role in inducing cell apoptosis. Therefore, it is significant to monitor oxidative stress upon drug release for the assessment of therapeutic effects in cancer cells. Herein, a glutathione (GSH)-responsive surface-enhanced Raman scattering (SERS) nanoplatform is proposed for ultra-sensitively monitoring the substance related with oxidative stress (hydrogen sulfide, H2S), depleting reactive sulfur species and releasing anticancer drugs to amplify oxidative stress for tumor apoptosis. The Au@Raman reporter@Ag (Au@M@Ag) nanoparticles, where a 4-mercaptobenzonitrile molecule as a Raman reporter was embedded between layers of gold and silver to obtain sensitive SERS response, were coated with a covalent organic framework (COF) shell to form a core-shell structure (Au@M@Ag@COFs) as the SERS nanoplatform. The COF shell loading doxorubicin (DOX) of Au@M@Ag@COFs exhibited the GSH-responsive degradation capacity to release DOX, and its Ag layer as the sensing agent was oxidized to Ag2S by H2S to result in its prominent changes in SERS signals with a low detection limit of 0.33 nM. Moreover, the releasing DOX can inhibit the generation of H2S to promote the production of reactive oxygen species, and the depletion of reactive sulfur species (GSH and H2S) in cancer cells can further enhance the oxidative stress to induce tumor apoptosis. Overall, the SERS strategy could provide a powerful tool to monitor the dynamic changes of oxidative stress during therapeutic processes in a tumor microenvironment.
Assuntos
Sulfeto de Hidrogênio , Nanopartículas , Neoplasias , Humanos , Nanopartículas/química , Doxorrubicina/farmacologia , Doxorrubicina/química , Neoplasias/tratamento farmacológico , Estresse Oxidativo , Microambiente TumoralRESUMO
Dopamine (DA) is an important neurotransmitter, which not only participates in the regulation of neural processes but also plays critical roles in tumor progression and immunity. However, direct identification of DA-containing exosomes, as well as quantification of DA in single vesicles, is still challenging. Here, we report a nanopipette-assisted method to detect single exosomes and their dopamine contents via amperometric measurement. The resistive-pulse current measured can simultaneously provide accurate information of vesicle translocation and DA contents in single exosomes. Accordingly, DA-containing exosomes secreted from HeLa and PC12 cells under different treatment modes successfully detected the DA encapsulation efficiency and the amount of exosome secretion that distinguish between cell types. Furthermore, a custom machine learning model was constructed to classify the exosome signals from different sources, with an accuracy of more than 99%. Our strategy offers a useful tool for investigating single exosomes and their DA contents, which facilitates the analysis of DA-containing exosomes derived from other untreated or stimulated cells and may open up a new insight to the research of DA biology.
RESUMO
The abnormal change in the expression profile of multiple cancer biomarkers is closely related to tumor progression and therapeutic effect. Due to their low abundance in living cells and the limitations of existing imaging techniques, simultaneous imaging of multiple cancer biomarkers has remained a significant challenge. Here, we proposed a multi-modal imaging strategy to detect the correlated expression of multiple cancer biomarkers, MUC1, microRNA-21 (miRNA-21) and reactive oxygen (ROS) in living cells, based on a porous covalent organic framework (COF) wrapped gold nanoparticles (AuNPs) core-shell nanoprobe. The nanoprobe is functionalized with Cy5-labeled MUC1 aptamer, a ROS-responsive molecule (2-MHQ), and a miRNA-21-response hairpin DNA tagged by FITC as the reporters for different biomarkers. The target-specific recognition can induce the orthogonal molecular change of these reporters, producing fluorescence and Raman signals for imaging the expression profiles of membrane MUC1 (red fluorescence channel), intracellular miRNA-21 (green fluorescence channel), and intracellular ROS (SERS channel). We further demonstrate the capability of the cooperative expression of these biomarkers, along with the activation of NF-κB pathway. Our research provides a robust platform for imaging multiple cancer biomarkers, with broad potential applications in cancer clinical diagnosis and drug discovery.
Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Estruturas Metalorgânicas , MicroRNAs , Neoplasias , Humanos , Biomarcadores Tumorais , Ouro , Espécies Reativas de Oxigênio , Técnicas Biossensoriais/métodos , Neoplasias/diagnóstico , MicroRNAs/genética , Análise Espectral RamanRESUMO
Nanomaterials have presented great potential for cancer therapy. However, their therapeutic efficacy is not always satisfied because of inefficient biocompatibility and targeting efficacy. Here, we report engineered extracellular vesicle (EV)-encapsuled nanoreactors for the targeting and killing of cancer cells. EVs are extracted from engineered cancer cells with surface N-glycans cut and intracellular microRNA-21 (miR-21) silenced to generate cancer-targeting membranes for the following coating of gold-polydopamine (PDA) core-shell nanoparticles. The encapsuled nanoparticles are decorated with doxorubicin (Dox), glucose oxidase (GOx), and miR-21-indicative DNA tags. Once endocytosed, the acidic pH, together with the photothermal effect of the PDA shell, can promote the release of Dox and GOx-catalyzed H2O2 generation/glucose consumption, while the DNA tags allow enhanced fluorescence imaging of miR-21 to indicate the targeting effect. The coadministration of EV-assisted delivery and cascade treatment represents a promising strategy for combination therapy.
Assuntos
Vesículas Extracelulares , MicroRNAs , Neoplasias , Peróxido de Hidrogênio , Doxorrubicina/farmacologia , Glucose Oxidase , MicroRNAs/genética , Nanotecnologia , Neoplasias/tratamento farmacológicoRESUMO
ATP and reactive oxygen species (ROS) are considered significant indicators of cell apoptosis. However, visualizing the interplay between apoptosis-related ATP and ROS is challenging. Herein, we developed a metal-organic framework (MOF)-based nanoprobe for an apoptosis assay using duplex imaging of cellular ATP and ROS. The nanoprobe was fabricated through controlled encapsulation of gold nanorods with a thin zirconium-based MOF layer, followed by modification of the ROS-responsive molecules 2-mercaptohydroquinone and 6-carboxyfluorescein-labeled ATP aptamer. The nanoprobe enables ATP and ROS visualization via fluorescence and surface-enhanced Raman spectroscopy, respectively, avoiding the mutual interference that often occurs in single-mode methods. Moreover, the dual-modal assay effectively showed dynamic imaging of ATP and ROS in cancer cells treated with various drugs, revealing their apoptosis-related pathways and interactions that differ from those under normal conditions. This study provides a method for studying the relationship between energy metabolism and redox homeostasis in cell apoptosis processes.
Assuntos
Apoptose , Ouro , Espécies Reativas de Oxigênio/metabolismo , Ouro/química , Trifosfato de AdenosinaRESUMO
Cooperative expression of multiple cancer biomarkers is of great significance in influencing cell pathways and drug treatment. However, the simultaneous analysis of low-abundance biomarkers in living cells remains a challenge. Here, we report a DNAzyme-powered DNA walker to visualize the cooperative expression of mutant p53 and telomerase in living cells. The activation of the DNA walker is orthogonally powered by mutated p53 and telomerase, which enables the unlocking of the walking strand and the subsequently repeated substrate cleavage, producing fluorescence recovery for the imaging of the two target molecules in living cells. The DNA walker allows for real-time monitoring of the expression profile of mutant p53 and active telomerase in cancer cells under various antitumor drug treatments, and the results demonstrate the cooperative expression of mutant p53 and telomerase via the Akt pathway, which may bring new insights into the study of cancer pathway-relevant biomarkers.
Assuntos
DNA Catalítico , Neoplasias , Telomerase , Humanos , DNA Catalítico/química , Proteína Supressora de Tumor p53/genética , Telomerase/metabolismo , DNA/química , Neoplasias/diagnóstico por imagem , Neoplasias/genética , Neoplasias/patologiaRESUMO
Total joint arthroplasty is a common surgical procedure resulting in improved quality of life; however, a leading cause of surgery failure is infection. Periprosthetic joint infections often involve biofilms, making treatment challenging. The metabolic state of pathogens in the joint space and mechanism of their tolerance to antibiotics and host defenses are not well understood. Thus, there is a critical need for increased understanding of the physiological state of pathogens in the joint space for development of improved treatment strategies toward better patient outcomes. Here, we present a quantitative, untargeted NMR-based metabolomics strategy for Pseudomonas aeruginosa suspended culture and biofilm phenotypes grown in bovine synovial fluid as a model system. Significant differences in metabolic pathways were found between the suspended culture and biofilm phenotypes including creatine, glutathione, alanine, and choline metabolism and the tricarboxylic acid cycle. We also identified 21 unique metabolites with the presence of P. aeruginosa in synovial fluid and one uniquely present with the biofilm phenotype in synovial fluid. If translatable in vivo, these unique metabolite and pathway differences have the potential for further development to serve as targets for P. aeruginosa and biofilm control in synovial fluid.
Assuntos
Infecções por Pseudomonas , Pseudomonas aeruginosa , Alanina/metabolismo , Animais , Antibacterianos/metabolismo , Biofilmes , Bovinos , Colina/metabolismo , Creatina/metabolismo , Glutationa/metabolismo , Pseudomonas aeruginosa/fisiologia , Qualidade de Vida , Líquido SinovialRESUMO
Despite the promise of combination cancer therapy, it remains challenging to develop targeted strategies that are nontoxic to normal cells. Here we report a combination therapeutic strategy based on engineered DNAzyme molecular machines that can promote cancer apoptosis via dynamic inter- and intracellular regulation. To achieve external regulation of T-cell/cancer cell interactions, we designed a DNAzyme-based molecular machine with an aptamer and an i-motif, as the MUC-1-selective aptamer allows the specific recognition of cancer cells. The i-motif is folded under the tumor acidic microenvironment, shortening the intercellular distance. As a result, T-cells are released by metal ion activated DNAzyme cleavage. To achieve internal regulation of mitochondria, we delivered another DNAzyme-based molecular machine with mitochondria-targeted peptides into cancer cells to induce mitochondria aggregation. Our strategy achieved an enhanced killing effect in zinc deficient cancer cells.
Assuntos
Técnicas Biossensoriais , DNA Catalítico , Neoplasias , Humanos , DNA Catalítico/química , Neoplasias/tratamento farmacológico , Microambiente TumoralRESUMO
Targeted delivery and labeling of single living cells in heterogeneous cell populations are of great importance to understand the molecular biology and physiological functions of individual cells. However, it remains challenging to perfuse fluorescence markers into single living cells with high spatial and temporal resolution without interfering neighboring cells. Here, we report a single cell perfusion and fluorescence labeling strategy based on nanoscale glass nanopipettes. With the nanoscale tip hole of 100 nm, the use of nanopipettes allows special perfusion and high-resolution fluorescence labeling of different subcellular regions in single cells of interest. The dynamic of various fluorescent probes has been studied to exemplify the feasibility of nanopipette-dependent targeted delivery. According to experimental results, the cytoplasm labeling of Sulfo-Cyanine5 and fluorescein isothiocyanate is mainly based on the Brownian movement due to the dyes themselves and does not have a targeting ability, while the nucleus labeling of 4',6-diamidino-2-phenylindole (DAPI) is originated from the adsorption between DAPI and DNA in the nucleus. From the finite element simulation, the precise manipulation of intracellular delivery is realized by controlling the electro-osmotic flow inside the nanopipettes, and the different delivery modes between nontargeting dyes and nucleus-targeting dyes were compared, showcasing the valuable ability of nanopipette-based method for the analysis of specially defined subcellular regions and the potential applications for single cell surgery, subcellular manipulation, and gene delivery.
Assuntos
Corantes Fluorescentes , Nanotecnologia , DNA , Fluoresceínas , Isotiocianatos , Nanotecnologia/métodos , PerfusãoRESUMO
Ganoderma lucidum is a famous edible and medicinal fungus. Through a bioactive phytochemical investigation of the ethanolic extracts of the fruiting bodies of G. lucidum, twenty-nine triterpenoids, including eleven previously undescribed triterpenoids, were isolated and characterized based on spectroscopic data. The inhibitory effects of all the triterpenes against fatty acid amide hydrolase (FAAH) were found to be in the range of 30-60% at 100 µM. Methyl ganoderate A displayed the strongest inhibitory activity (61%) against FAAH. Furthermore, all compounds displayed no cytotoxicity against LOVO and MCF-7 human cancer cells. Hence, our present study provides information about G. lucidum as a functional food or pharmaceutical supplement for the treatment of neuroinflammation.
Assuntos
Amidoidrolases , Reishi , Triterpenos , Amidoidrolases/antagonistas & inibidores , Carpóforos/química , Humanos , Estrutura Molecular , Reishi/química , Esteroides/análise , Triterpenos/químicaRESUMO
Considering the possible interaction between mesenchymal stem cells (MSCs) and PI3Kγ-associated drugs, we evaluated the efficacy and action mechanism of MSCs in the treatment of colitis in PI3Kγ-/- mice. Trinitro-benzene-sulfonic acid enema was used to create a colitis model, and MSCs were transplanted through the caudal vein to treat colitis in wild-type and PI3Kγ-/- mice. We sequenced microbial 16S rRNA genes in the colonic mucosa of PI3Kγ-/- and wild-type mice and quantified colonic IgA, IL-2, IL-10, IL-17A, occludin, and serum IgA. MSC transplantation led to a more serious reduction in the weight of trinitro-benzene-sulfonic acid-administered PI3Kγ-/- mice than that in wild-type mice. The disease activity index, pathological scoring, number of taxa in the colon, Berger-Parker index, I-index, proportion of Proteobacteria, and IgA level in the blood were higher in PI3Kγ-/- mice than in wild-type mice after MSC transplantation. The occludin and IL-10 levels in the colon tissues decreased before and after MSC transplantation in PI3Kγ-/- mice, whereas they were increased in wild-type mice The IL-17 level decreased in both wild-type and PI3Kγ-/- mice, with knockout mice showing a greater decrease. Therefore, MSC transplantation in PI3Kγ-/- mice led to increased numbers of exogenous pathogenic microorganisms and enhanced colitis that was difficult to relieve.
Assuntos
Classe Ib de Fosfatidilinositol 3-Quinase/metabolismo , Colite , Transplante de Células-Tronco Mesenquimais , Animais , Benzeno , Colite/induzido quimicamente , Citocinas , Modelos Animais de Doenças , Imunoglobulina A , Inflamação , Interleucina-10/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ocludina , RNA Ribossômico 16S , Ácido TrinitrobenzenossulfônicoRESUMO
There is an unmet clinical need to develop noninvasive liquid biopsy tools for systemic lupus erythematosus (SLE) diagnosis and therapeutic effect evaluation. Extracellular vesicles (EVs), which are abundant in body fluids, have emerged as a valuable resource for liquid biopsy. Herein, we describe a simple and robust EV detection platform that is based on a plasmonic nanoparticle-embedded polydopamine substrate that is modified with EV-capture molecules and detection probes. We investigated three EV biomarkers, namely, programmed cell death protein-1 (PD-1), microRNA-146a (miRNA-146a) and sialic acid (SA), in serum and urine from SLE patients and healthy controls. This platform prevents complex pretreatment while enabling highly efficient EV capture to the substrate surface, and the multiple functionalization of the detection interface with specific biomarker probes enables simultaneous detection of PD-1, miRNA-146a and SA that are carried by EVs via fluorescence (FL) imaging at the single-vesicle level. Via comparison of EV biomarker profiles, SLE patients can be distinguished from normal controls and classified into treated and untreated groups. Due to its ease of preparation, simplicity and stability, our approach shows good potential in the design of EV-based biosensors for clinical use.
Assuntos
Líquidos Corporais , Vesículas Extracelulares , Lúpus Eritematoso Sistêmico , MicroRNAs , Nanopartículas , Biomarcadores/metabolismo , Líquidos Corporais/metabolismo , Humanos , Indóis , Lúpus Eritematoso Sistêmico/diagnóstico , Lúpus Eritematoso Sistêmico/metabolismo , MicroRNAs/metabolismo , Polímeros , Receptor de Morte Celular Programada 1/metabolismoRESUMO
P0 proteins encoded by poleroviruses Brassica yellows virus (BrYV) and Potato leafroll virus (PLRV) are viral suppressors of RNA silencing (VSR) involved in abolishing host RNA silencing to assist viral infection. However, other roles that P0 proteins play in virus infection remain unclear. Here, we found that C-terminal truncation of P0 resulted in compromised systemic infection of BrYV and PLRV. C-terminal truncation affected systemic but not local VSR activities of P0 proteins, but neither transient nor ectopic stably expressed VSR proteins could rescue the systemic infection of BrYV and PLRV mutants. Moreover, BrYV mutant failed to establish systemic infection in DCL2/4 RNAi or RDR6 RNAi plants, indicating that systemic infection might be independent of the VSR activity of P0. Partially rescued infection of BrYV mutant by the co-infected PLRV implied the functional conservation of P0 proteins within genus. However, although C-terminal truncation mutant of BrYV P0 showed weaker interaction with its movement protein (MP) when compared to wild-type P0, wild-type and mutant PLRV P0 showed similar interaction with its MP. In sum, our findings revealed the role of P0 in virus systemic infection and the requirement of P0 carboxyl terminal region for the infection.
Assuntos
Luteoviridae/genética , Luteoviridae/patogenicidade , Proteína P0 da Mielina/genética , Proteínas Virais/genética , Brassica/virologia , Mutação/genética , Doenças das Plantas/virologia , Proteínas de Plantas/genética , Interferência de RNA/fisiologia , Nicotiana/virologiaRESUMO
Tobacco wastewater is too difficult to decontaminate which poses a significant environmental problem due to the harmful and toxic components. Chlorella pyrenoidosa is a typical microalgal species with potential in removal of organic/inorganic pollutants and proves to be an ideal algal-based system for wastewater treatment. However, the strategy of tobacco related wastewater treatment using microalgae is in urgent need of development. In this study, C. pyrenoidosa was used to evaluate the removal efficiency of artificial tobacco wastewater. Under various solid-to-liquid (g/L) ratios, 1:1 ratio and acidic pH 5.0 were optimal for C. pyrenoidosa to grow with high performance of removal capacity to toxic pollutants (such as COD, NH3-N, nicotine, nitrosamines and heavy metals) with the alleviation of oxidative damage. Algal biomass could reach up to 540.24 mg/L. Furthermore, carbon flux of C. pyrenoidosa was reallocated from carbohydrate and protein biosynthesis to lipogenesis with a high lipid content of 268.60 mg/L at pH 5.0. Overall, this study demonstrates an efficient and sustainable strategy for tobacco wastewater treatment at acidic pH with the production of valuable microalgal products, which provides a promising biorefinery strategy for microalgal-based wastewater bioremediation.