Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sleep Breath ; 2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37775619

RESUMO

PURPOSE: Intermittent hypoxia (IH) is a hallmark of obstructive sleep apnea (OSA), which is related to tumorigenesis and progression. Although micro-ribonucleic acid-210-3p (miR-210-3p) is correlated with hypoxia-induced tumor development, its role in the relationship between IH and tumor function remains poorly understood. The present work focused on elucidating the molecular mechanism through which miR-210-3p drives tumor progression under IH. METHODS: MiR-210-3p levels were quantified within tumor samples from patients with lung adenocarcinoma who had or did not have OSA. Correlations between miR-210-3p and polysomnographic variables were analyzed. For in vitro experiments, miR-210-3p was inhibited or overexpressed via transfection under IH conditions. Cell viability, growth, invasion and migration assays were carried out. For in vivo modeling of IH using mouse xenografts, a miR-210-3p antagomir was intratumorally injected, tumor biological behaviors were evaluated, and reverse transcription-quantitative polymerase chain reaction (RT-qPCR), immunohistochemistry and western blot were carried out for detecting miR-210-3p and E2F transcription factor 3 (E2F3) expression. RESULTS: For patients with lung adenocarcinoma and OSA, high miR-210-3p levels showed positive relation to polysomnographic variables, such as oxygen desaturation index, apnea-hypopnea index, and proportion of total sleep time with oxygen saturation in arterial blood < 90%. IH enhanced tumor viability, proliferation, migration, and invasion, downregulated E2F3 expression, and increased miR-210-3-p levels. miR-210-3p overexpression induced similar changes. These changes were reversed by miR-210-3p inhibition in vitro or miR-210-3p antagomir through intratumoral injection in vivo. CONCLUSIONS: IH-induced tumor development is driven through miR-210-3p by E2F3 suppression. MiR-210-3p represents a potential therapeutic target among patients with concomitant cancer and OSA.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA