Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Zhongguo Zhong Yao Za Zhi ; 49(8): 2178-2187, 2024 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-38812233

RESUMO

This paper aims to explore the effect of Xuming Decoction in the Records of Proved Prescriptions, Ancient and Modern on cerebral ischemic injury and angiogenesis in the rat model of acute cerebral infarction. SD rats were randomized into 6 groups: sham group, model group, low-, medium-, and high-dose(5.13, 10.26, and 20.52 g·kg~(-1), respectively) Xuming Decoction groups, and butylphthalide(0.06 g·kg~(-1)) group. After the successful establishment of the rat model by middle cerebral artery occlusion(MCAO), rats in the sham and model groups were administrated with distilled water and those in other groups with corresponding drugs for 7 consecutive days. After the neurological function was scored, all the rats were sacrificed, and the brain tissue samples were collected. The degree of cerebral ischemic injury was assessed by the neurological deficit score and staining with 2,3,5-triphenyltetrazolium chloride. Hematoxylin-eosin staining was performed to observe the pathological changes in the brain. Transmission electron microscopy was employed to observe the ultrastructures of neurons and microvascular endothelial cells(ECs) on the ischemic side of the brain tissue. Immunofluorescence assay was employed to detect the expression of von Willebrand factor(vWF) and hematopoietic progenitor cell antigen CD34(CD34) in the ischemic brain tissue. Real-time PCR and Western blot were employed to determine the mRNA and protein levels, respectively, of Runt-related transcription factor 1(RUNX1), vascular endothelial growth factor(VEGF), angiopoietin-1(Ang-1), angiopoietin-2(Ang-2), and VEGF receptor 2(VEGFR2) in the ischemic brain tissue. The results showed that compared with the sham group, the model group showed increased neurological deficit score and cerebral infarction area(P<0.01), pathological changes, and damaged ultrastructure of neurons and microvascular ECs in the ischemic brain tissue. Furthermore, the modeling up-regulated the mRNA levels of RUNX1, VEGF, Ang-1, Ang-2, and VEGFR2(P<0.01) and the protein levels of vWF, CD34, RUNX1, VEGF, Ang-1, Ang-2, and VEGFR2(P<0.05 or P<0.01). Compared with the model group, high-dose Xuming Decoction and butylphthalide decreased the neurological deficit score and cerebral infarction area(P<0.01) and alleviated the pathological changes and damage of the ultrastructure of neurons and microvascular ECs in the ischemic brain tissue. Moreover, they up-regulated the mRNA levels of RUNX1, VEGF, Ang-1, Ang-2, and VEGFR2(P<0.01) and the protein levels of vWF, CD34, RUNX1, VEGF, Ang-1, Ang-2, and VEGFR2(P<0.01). The results suggest that Xuming Decoction in the Records of Proved Prescriptions, Ancient and Modern can promote the angiogenesis and collateral circulation establishment to alleviate neurological dysfunction of the ischemic brain tissue in MCAO rats by regulating the RUNX1/VEGF pathway.


Assuntos
Isquemia Encefálica , Infarto Cerebral , Modelos Animais de Doenças , Medicamentos de Ervas Chinesas , Ratos Sprague-Dawley , Animais , Ratos , Masculino , Medicamentos de Ervas Chinesas/farmacologia , Infarto Cerebral/tratamento farmacológico , Infarto Cerebral/metabolismo , Infarto Cerebral/genética , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/metabolismo , Isquemia Encefálica/genética , Humanos , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Neovascularização Fisiológica/efeitos dos fármacos , Angiopoietina-2/genética , Angiopoietina-2/metabolismo , Angiogênese
2.
Zhongguo Zhong Yao Za Zhi ; 47(14): 3933-3942, 2022 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-35850852

RESUMO

The study was conducted by searching the literature related to the regulation of necroptosis with Chinese medicine from January 1, 2005 to December 31, 2021 in CNKI, VIP, Wanfang, Web of Science(WoS), and PubMed. The obtained literature were imported into NoteExpress for eliminating duplicates and screening, and the final included articles were imported into Excel to plot the publication trend. The core authors were identified according to Price's law, and VOSviewer 1.6.17 was used to draw a collaborative view of the core authors and sort the high-frequency keywords. Then CiteSpace 5.8.R3 was employed to analyze keywords clustering, burst, and timeline view. Finally, 98 Chinese articles and 72 English articles were included in the study. The number of publications on the regulation of necroptosis with Chinese medicine has been increasing year by year. China ranked among the top in the world in terms of the number of publications, and Chinese authors played a central role in this field. Specifically, LIU Hua published the most Chinese literature while CHEN X P had the most English publications. The collaborative view of the core authors showed more intra-team cooperation and less inter-team cooperation. The Chinese and English keywords formed ten clusters separately, indicating that the research hotspots of regulation of necroptosis with Chinese medicine mainly focused on disease, prescription, related factors, and mecha-nism. Further, the analysis of Chinese and English keywords revealed that regarding disease treatment, tumor, ischemia-reperfusion injury, neurodegenerative diseases, and inflammatory diseases were studied most. The Chinese medicines that received much attention in this field were curcumin, shikonin and tanshinone. The main protein factors involved were Ripk1, Ripk3, Mlkl, and TNF-α, and Ripk1/Ripk3/Mlkl and p53 signaling pathways were predominant. Moreover, single herbs and herbal monomers were the hotspots of the included articles. In the future, scholars need to expand the study of classical Chinese herbal compounds and explore their mechanism of action in the occurrence and development of various diseases, to provide new ideas and experimental basis for the treatment of clinical diseases with Chinese medicine.


Assuntos
Medicina Tradicional Chinesa , Necroptose , China , Reconhecimento Automatizado de Padrão
3.
Food Funct ; 13(8): 4576-4591, 2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-35355025

RESUMO

Mulberry leaves exhibit anti-lipogenic and lipid-lowering effects. However, the lipid biomarkers and underlying mechanisms for the improvement of the action of mulberry leaves on obesity and lipid metabolism disorders have not been sufficiently investigated yet. Herein, biochemical analysis combined with metabolomics targeting serum lipid mediators (oxylipins) were used to explore the efficacy and underlying mechanisms of mulberry leaf water extract (MLWE) in high-fat and high-sucrose diet (HFHSD)-fed mice. Our results showed that MLWE supplementation not only decreased body weight gain, serum total triglycerides, low-density lipoprotein cholesterol, alanine transaminase and aspartate transaminase levels, but also increased the serum level of high-density lipoprotein cholesterol. In addition, MLWE supplementation also ameliorated hepatic steatosis and lipid accumulation. These beneficial effects were associated with down-regulating genes involved in oxidative stress, inflammation, and lipogenesis such as acetyl-CoA carboxylase and fatty acid synthase, and up-regulating genes related to lipolysis that encoded peroxisome proliferator-activated receptor α, adiponectin (ADPN), adiponectin receptor (AdipoR) 1, AdipoR2, adenosine monophosphate-activated protein kinase (AMPK) and hormone-sensitive lipase. Moreover, a total of 54 serum lipid mediators were differentially changed in HFHSD-fed mice, among which 11 lipid mediators from n-3 polyunsaturated fatty acids (PUFAs) were apparently reversed by MLWE. These findings indicated that the ADPN/AMPK pathway, anti-inflammation, anti-oxidation, and n-3 PUFA metabolism played important roles in anti-obesity and improvement of lipid metabolism disorders modulated by MLWE supplementation.


Assuntos
Transtornos do Metabolismo dos Lipídeos , Morus , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Colesterol/metabolismo , Dieta Hiperlipídica/efeitos adversos , Metabolismo dos Lipídeos , Transtornos do Metabolismo dos Lipídeos/metabolismo , Fígado/metabolismo , Camundongos , Obesidade/metabolismo , Folhas de Planta/metabolismo , Sacarose/metabolismo , Triglicerídeos/metabolismo
4.
Phytomedicine ; 98: 153959, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35134622

RESUMO

BACKGROUND: Obesity is a worldwide problem that resulted from the excessive fat accumulation in adipose tissue, leading to the impairment of individual health. Mulberry leaf is an important traditional Chinese medicine and has been used to alleviate obesity for a long term. However, its underlying molecular mechanisms have not been fully elucidated yet. PURPOSE: In this study, we aimed to investigate the inhibition effects of mulberry leaf water extract (MLWE) on lipid accumulation during the process of differentiation of 3T3-L1 preadipocytes and development of mature adipocytes through the combination of molecular biology assays and metabolomic analysis. METHODS: The quality consistency and main chemical ingredients of MLWE were analyzed by high performance liquid chromatography and liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS), respectively. Oil red O staining was used to mirror lipid accumulation. Lipogenesis-, lipolysis- and inflammation-related genes were evaluated by real-time PCR and western blot, respectively. Untargeted metabolomics were performed by LC-MS/MS. RESULTS: Prepared method and quality of MLWE were stable and reliable. A total of 34 compounds were identified and 14 of them were undoubtedly confirmed. MLWE supplementation could dose-dependently inhibit the aggregation of lipid droplets, and the expressions of sterol regulatory element-binding protein (SREBP)-1c, peroxisome proliferator-activated receptor (PPAR) γ, acetyl-CoA carboxylase (ACC), fatty acid synthase (FAS), tumor necrosis factor (TNF)-α and interleukin (IL)-6, and increase the expressions of adenosine monophosphate-activated protein kinase (AMPK), hormone-sensitive lipase (HSL) and IL-10 in the differentiation of preadipocytes. Furthermore, MLWE treatment could dose-dependently decrease the level of triglycerides and the expressions of ACC, FAS, TNF-α, and IL-6, and up-regulate the level of glycerol and the expressions of PPARα, adiponectin (ADPN), adiponectin receptor (AdipoR) 1, AdipoR2, AMPK, HSL, and IL-10 in the development of mature adipocytes. Untargeted metabolomics showed that a total of 5 and 18 differential metabolites were reversed by MLWE intervention in the differentiation of preadipocytes and the development of mature adipocytes, respectively, which involved in the biosynthesis of unsaturated fatty acids, arachidonic acid metabolism and glycerophospholipids metabolism. CONCLUSION: Taken together, this study firstly verified that MLWE could effectively alleviate lipid accumulation and inflammation by regulating ADPN/AMPK-mediated signaling pathways and relevant metabolic disturbances including biosynthesis of unsaturated fatty acids, arachidonic acid metabolism and glycerophospholipids metabolism.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA