Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 277
Filtrar
1.
J Plant Physiol ; 299: 154263, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38772323

RESUMO

The oil palm (Elaeis guineensis) is emerging as the world's most important and prolific oilseed crop, celebrated for its impressive oil yield. However, the molecular intricacies that govern lipid metabolism and fatty acid accumulation in oil palm fruits remain relatively underexplored. This study reveals a significant correlation between the expression of EgGRP2A, a transcription factor, and the expression of EgFATA in the oil palm. Yeast one-hybrid analysis and electrophoretic mobility shift assays (EMSA) reveal and confirm the binding interactions between EgGRP2A and the promoter region of EgFATA. Subsequent experiments in oil palm protoplasts show that transient overexpression of EgGRP2A leads to a marked upregulation of EgFATA expression. Conversely, downregulation of EgGRP2A in transgenic oil palm embryoids leads to a significant reduction in EgFATA expression. Metabolite profiling in the transgenic embryoids reveals a significant reduction in unsaturated fatty acids, particularly oleic acid. These findings promise profound insights into the regulatory orchestration of EgFATA and the synthesis of fatty acids, particularly oleic acid, in the oil palm. Furthermore, the results lay the foundation for future breeding and genetic improvement efforts aimed at increasing oleic acid content in oil palm varieties.

2.
Cell Rep Methods ; : 100781, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38761803

RESUMO

We present an innovative strategy for integrating whole-genome-wide multi-omics data, which facilitates adaptive amalgamation by leveraging hidden layer features derived from high-dimensional omics data through a multi-task encoder. Empirical evaluations on eight benchmark cancer datasets substantiated that our proposed framework outstripped the comparative algorithms in cancer subtyping, delivering superior subtyping outcomes. Building upon these subtyping results, we establish a robust pipeline for identifying whole-genome-wide biomarkers, unearthing 195 significant biomarkers. Furthermore, we conduct an exhaustive analysis to assess the importance of each omic and non-coding region features at the whole-genome-wide level during cancer subtyping. Our investigation shows that both omics and non-coding region features substantially impact cancer development and survival prognosis. This study emphasizes the potential and practical implications of integrating genome-wide data in cancer research, demonstrating the potency of comprehensive genomic characterization. Additionally, our findings offer insightful perspectives for multi-omics analysis employing deep learning methodologies.

3.
Int Immunopharmacol ; 134: 112255, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38744176

RESUMO

Inflammatory bowel disease (IBD) is distinguished by persistent immune-mediated inflammation of the gastrointestinal tract. Previous experimental investigations have shown encouraging outcomes for the use of mesenchymal stem cell (MSC)-based therapy in the treatment of IBD. However, as a primary medication for IBD patients, there is limited information regarding the potential interaction between 5-aminosalicylates (5-ASA) and MSCs. In this present study, we employed the dextran sulfate sodium (DSS)-induced ulcerative colitis (UC) mouse model to examine the influence of a combination of MSCs and 5-ASA on the development of UC. The mice were subjected to weight measurement, DAI scoring, assessment of calprotectin expression, and collection of colons for histological examination. The findings revealed that both 5-ASA and MSCs have demonstrated efficacy in the treatment of UC. However, it is noteworthy that 5-ASA exhibits a quicker onset of action, while MSCs demonstrate more advantageous and enduring therapeutic effects. Additionally, the combination of 5-ASA and MSC treatment shows a less favorable efficacy compared to the MSCs alone group. Moreover, our study conducted in vitro revealed that 5-ASA could promote MSC migration, but it could also inhibit MSC proliferation, induce apoptosis, overexpress inflammatory factors (IL-2, IL-12P70, and TNF-α), and reduce the expression of PD-L1 and PD-L2. Furthermore, a significant decrease in the viability of MSCs within the colon was observed as a result of 5-ASA induction. These findings collectively indicate that the use of 5-ASA has the potential to interfere with the therapeutic efficacy of MSC transplantation for the treatment of IBD.

4.
Pragmat Obs Res ; 15: 65-78, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38559704

RESUMO

Background: Lack of body mass index (BMI) measurements limits the utility of claims data for bariatric surgery research, but pre-operative BMI may be imputed due to existence of weight-related diagnosis codes and BMI-related reimbursement requirements. We used a machine learning pipeline to create a claims-based scoring system to predict pre-operative BMI, as documented in the electronic health record (EHR), among patients undergoing a new bariatric surgery. Methods: Using the Optum Labs Data Warehouse, containing linked de-identified claims and EHR data for commercial or Medicare Advantage enrollees, we identified adults undergoing a new bariatric surgery between January 2011 and June 2018 with a BMI measurement in linked EHR data ≤30 days before the index surgery (n=3226). We constructed predictors from claims data and applied a machine learning pipeline to create a scoring system for pre-operative BMI, the B3S3. We evaluated the B3S3 and a simple linear regression model (benchmark) in test patients whose index surgery occurred concurrent (2011-2017) or prospective (2018) to the training data. Results: The machine learning pipeline yielded a final scoring system that included weight-related diagnosis codes, age, and number of days hospitalized and distinct drugs dispensed in the past 6 months. In concurrent test data, the B3S3 had excellent performance (R2 0.862, 95% confidence interval [CI] 0.815-0.898) and calibration. The benchmark algorithm had good performance (R2 0.750, 95% CI 0.686-0.799) and calibration but both aspects were inferior to the B3S3. Findings in prospective test data were similar. Conclusion: The B3S3 is an accessible tool that researchers can use with claims data to obtain granular and accurate predicted values of pre-operative BMI, which may enhance confounding control and investigation of effect modification by baseline obesity levels in bariatric surgery studies utilizing claims data.


Pre-operative BMI is an important potential confounder in comparative effectiveness studies of bariatric surgeries.Claims data lack clinical measurements, but insurance reimbursement requirements for bariatric surgery often result in pre-operative BMI being coded in claims data.We used a machine learning pipeline to create a model, the B3S3, to predict pre-operative BMI, as documented in the EHR, among bariatric surgery patients based on the presence of certain weight-related diagnosis codes and other patient characteristics derived from claims data.Researchers can easily use the B3S3 with claims data to obtain granular and accurate predicted values of pre-operative BMI among bariatric surgery patients.

5.
Heliyon ; 10(7): e28046, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38560130

RESUMO

Hereditary hemochromatosis (HH) is a disease characterized by disordered iron metabolism. It often involves mutations of the HFE gene, which encodes the homeostatic iron regulator protein (HFE), as well as mutations affecting hepcidin antimicrobial peptide, hemojuvelin, or transferrin receptor 2. Historically, HH has been observed primarily in European and European diaspora populations, while classical HH is rare in Asian populations, including in China. In this article, we report a rare case of HH in a Chinese man that could be attributed to a heterozygous C282Y/H63D HFE mutation. Based on clinical examination, liver biopsy, and genetic testing results, the patient was diagnosed with HH. Clinical signs and symptoms and serum iron-related test results were recorded for a period of two years after the patient began treatment. Over this observation period, the patient was subjected to 25 phlebotomies (accounting for a total blood loss of 10.2 L). His serum ferritin levels decreased from 1550 µg/L to 454 µg/L, his serum iron concentration decreased from 40 µmol/L to 24.6 µmol/L, and his transferrin saturation decreased from 97.5% to 55.1%. Early diagnosis is essential for patients with HH to obtain good outcomes. Regular phlebotomy after diagnosis can improve HH symptoms and delay HH disease progression.

6.
Plant Cell Rep ; 43(4): 107, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38558250

RESUMO

KEY MESSAGE: EgMADS3, a pivotal transcription factor, positively regulates MCFA accumulation via binding to the EgLPAAT promoter, advancing lipid content in mesocarp of oil palm. Lipids function as the structural components of cell membranes, which serve as permeable barriers to the external environment of cells. The medium-chain fatty acid in the stored lipids of plants is an important renewable energy. Most research on MCFA production in plant lipid synthesis is based on biochemical methods, and the importance of transcriptional regulation in MCFA synthesis and its incorporation into TAGs needs further research. Oil palm is the most productive oil crop in the world and has the highest productivity among the main oil crops. In this study, the MADS transcription factor (EgMADS3) in the mesocarp of oil palm was characterized. Through the VIGS-virus induced gene silencing, it was determined that the potential target gene of EgMADS3 was related to the biosynthesis of medium-chain fatty acid (MCFA). Transient transformation in protoplasts and qRT-PCR analysis showed that EgMADS3 positively regulated the expression of EgLPAAT. The results of the yeast one-hybrid assays and EMSA indicated the interaction between EgMADS3 and EgLPAAT promoter. Through genetic transformation and fatty acid analysis, it is concluded that EgMADS3 directly regulates the mid-chain fatty acid synthesis pathway of the potential target gene EgLPAAT, thus promotes the accumulation of MCFA and improves the total lipid content. This study is innovative in the functional analysis of the MADS family transcription factor in the metabolism of medium-chain fatty acids (MCFA) of oil palm, provides a certain research basis for improving the metabolic pathway of chain fatty acids in oil palm, and improves the synthesis of MCFA in plants. Our results will provide a reference direction for further research on improving the oil quality through biotechnology of oil palm.


Assuntos
Arecaceae , Arecaceae/genética , Arecaceae/metabolismo , Ácidos Graxos/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Redes e Vias Metabólicas , Óleo de Palmeira/metabolismo
7.
Int J Mol Sci ; 25(7)2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38612457

RESUMO

The advancement of exosome studies has positioned engineered exosomes as crucial biomaterials for the development of advanced drug delivery systems. This study focuses on developing a hybrid exosome system by fusing mesenchymal stem cells (MSCs) exosomes with folate-targeted liposomes. The aim was to improve the drug loading capacity and target modification of exosome nanocarriers for delivering the first-line chemotherapy drug paclitaxel (PTX) and its effectiveness was assessed through cellular uptake studies to evaluate its ability to deliver drugs to tumor cells in vitro. Additionally, in vivo experiments were conducted using a CT26 tumor-bearing mouse model to assess the therapeutic efficacy of hybrid exosomes loaded with PTX (ELP). Cellular uptake studies demonstrated that ELP exhibited superior drug delivery capabilities to tumor cells in vitro. Moreover, in vivo experiments revealed that ELP significantly suppressed tumor growth in the CT26 tumor-bearing mouse model. Notably, for the first time, we examined the tumor microenvironment following intratumoral administration of ELP. We observed that ELP treatment activated CD4+ and CD8+ T cells, reduced the expression of M2 type tumor-associated macrophages (TAMs), polarized TAMs towards the M1 type, and decreased regulatory T cells (Tregs). Our research highlights the considerable therapeutic efficacy of ELP and its promising potential for future application in cancer therapy. The development of hybrid exosomes presents an innovative approach to enhance drug delivery and modulate the tumor microenvironment, offering exciting prospects for effective cancer treatment strategies.


Assuntos
Exossomos , Neoplasias , Animais , Camundongos , Linfócitos T CD8-Positivos , Sistemas de Liberação de Medicamentos , Materiais Biocompatíveis , Modelos Animais de Doenças , Paclitaxel/farmacologia , Paclitaxel/uso terapêutico , Neoplasias/tratamento farmacológico
8.
Phytomedicine ; 128: 155475, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38492368

RESUMO

BACKGROUND: The intricate interactions between chronic psychological stress and susceptibility to breast cancer have been recognized, yet the underlying mechanisms remain unexplored. Danzhi Xiaoyao Powder (DZXY), a traditional Chinese medicine (TCM) formula, has found clinical utility in the treatment of breast cancer. Macrophages, as the predominant immune cell population within the tumor microenvironment (TME), play a pivotal role in orchestrating tumor immunosurveillance. Emerging evidence suggests that lipid oxidation accumulation in TME macrophages, plays a critical role in breast cancer development and progression. However, a comprehensive understanding of the pharmacological mechanisms and active components of DZXY related to its clinical application in the treatment of stress-aggravated breast cancer remains elusive. PURPOSE: This study sought to explore the plausible regulatory mechanisms and identify the key active components of DZXY contributing to its therapeutic efficacy in the context of breast cancer. METHODS: Initially, we conducted an investigation into the relationship between the phagocytic capacity of macrophages damaged by psychological stress and phospholipid peroxidation using flow cytometry and LC-MS/MS-based phospholipomics. Subsequently, we evaluated the therapeutic efficacy of DZXY based on the results of the tumor size, tumor weight, the phospholipid peroxidation pathway and phagocytosis of macrophage. Additionally, the target-mediated characterization strategy based on binding of arachidonate 15-lipoxygenase (ALOX15) to phosphatidylethanolamine-binding protein-1 (PEBP1), including molecular docking analysis, microscale thermophoresis (MST) assay, co-immunoprecipitation analysis and activity verification, has been further implemented to reveal the key bio-active components in DZXY. Finally, we evaluated the therapeutic efficacy of isochlorogenic acid C (ICAC) based on the results of tumor size, tumor weight, the phospholipid peroxidation pathway, and macrophage phagocytosis in vivo. RESULTS: The present study demonstrated that phospholipid peroxides, as determined by LC-MS/MS-based phospholipidomics, triggered in macrophages, which in turn compromised their capacity to eliminate tumor cells through phagocytosis. Furthermore, we elucidate the mechanism behind stress-induced PEBP1 to form a complex with ALOX15, thereby mediating membrane phospholipid peroxidation in macrophages. DZXY, demonstrates potent anti-breast cancer therapeutic effects by disrupting the ALOX15/PEBP1 interaction and inhibiting phospholipid peroxidation, ultimately enhancing macrophages' phagocytic capability towards tumor cells. Notably, ICAC emerged as a promising active component in DZXY, which can inhibit the ALOX15/PEBP1 interaction, thereby mitigating phospholipid peroxidation in macrophages. CONCLUSION: Collectively, our findings elucidate stress increases the susceptibility of breast cancer by driving lipid peroxidation of macrophages and suggest the ALOX15/PEBP1 complex as a promising intervention target for DZXY.


Assuntos
Araquidonato 15-Lipoxigenase , Medicamentos de Ervas Chinesas , Peroxidação de Lipídeos , Macrófagos , Fosfolipídeos , Microambiente Tumoral , Medicamentos de Ervas Chinesas/farmacologia , Microambiente Tumoral/efeitos dos fármacos , Animais , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Feminino , Camundongos , Araquidonato 15-Lipoxigenase/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Humanos , Neoplasias da Mama/tratamento farmacológico , Estresse Psicológico/tratamento farmacológico , Simulação de Acoplamento Molecular , Fagocitose/efeitos dos fármacos , Camundongos Endogâmicos BALB C , Células RAW 264.7
9.
Funct Integr Genomics ; 24(2): 54, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38467932

RESUMO

Despite substantial progress in clinical trials of osteoarthritis (OA) gene therapy, the prevalence of OA is still on the rise. MiRNAs have a potential biomarker and therapeutic target for OA. OA cartilage and chondrosarcoma cells were studied to determine the role of miR-29a-3p and PTEN. OA cartilage and human chondrosarcoma cells (SW1353) were obtained. miR-29a-3p and PTEN signature expression was determined by RT-qPCR. The binding relationship between miR-29a-3p and PTEN was investigated by dual-luciferase reporter gene and western blot assay. TUNEL, immunohistochemistry, CCK-8, and flow cytometry were utilized to determine the proliferation and apoptosis of SW1353 cells. This study indicated downregulation of miR-29a-3p expression and upregulation of PTEN expression in human OA primary chondrocytes or OA tissue samples, compared with the normal cartilage cells or tissues. PTEN expression was negatively correlated with miR-29a-3p expression, and miR-29a-3p targeted PTEN mechanistically. miR-29a-3p reduced SW1353 cell activity and proliferation and promoted cell apoptosis. However, the aforementioned effects could be reversed by downregulating PTEN. miR-29a-3p can stimulate chondrocyte proliferation and inhibit apoptosis by inhibiting PTEN expression.


Assuntos
Neoplasias Ósseas , Condrossarcoma , MicroRNAs , Osteoartrite , Humanos , Apoptose/genética , Proliferação de Células/genética , Condrossarcoma/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Osteoartrite/genética , Tensinas
10.
ACS Omega ; 9(4): 4974-4985, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38313474

RESUMO

Infectious wounds pose a significant challenge in the field of wound healing primarily due to persistent inflammation and the emergence of antibiotic-resistant bacteria. To combat these issues, the development of an effective wound dressing that can prevent infection and promote healing is of the utmost importance. Photodynamic therapy (PDT) has emerged as a promising noninvasive treatment strategy for tackling antibiotic-resistant bacteria. A biodegradable photosensitizer called hematoporphyrin monomethyl ether (HMME) has shown potential in generating reactive oxygen species (ROS) upon laser activation to combat bacteria. However, the insolubility of HMME limits its antibacterial efficacy and its ability to facilitate skin healing. To overcome these limitations, we have synthesized a compound hydrogel by combining carbomer, HMME, and Cu2O nanoparticles. This compound hydrogel exhibits enhanced antimicrobial ability and excellent biocompatibility and promotes angiogenesis, which is crucial for the healing of skin defects. By integrating the benefits of HMME, Cu2O nanoparticles, and the gel-forming properties of carbomer, this compound hydrogel shows great potential as an effective wound dressing material. In summary, the compound hydrogel developed in this study offers a promising solution for infectious wounds by addressing the challenges of infection prevention and promoting skin healing. This innovative approach utilizing PDT and the unique properties of the compound hydrogel could significantly improve the outcomes of wound healing in clinical settings.

11.
Curr Med Chem ; 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38310391

RESUMO

OBJECTIVES: To examine the role of ferroptosis on the pathogenesis and progression of COVID-19. MATERIALS AND METHODS: A total of 127 patients who were hospitalized for COVID-19 were categorized into two groups according to the intensity of oxygen therapy (high-flow or low-flow). Clinical characteristics, laboratory parameters, plasma markers, and peripheral blood mononuclear cell (PBMC) markers were measured at baseline and one or two weeks after treatment. Telephone follow-up was performed 3 months after discharge to assess long COVID. RESULTS: Patients receiving high-flow oxygen therapy had greater levels of neutrophils; D-dimer; C reactive protein; procalcitonin; plasma protein levels of tumor necrosis factor-alpha (TNF-α), interleukin 6 (IL-6), IL-17, and acyl-CoA synthetase long-chain family member 4 (ACSL4); and PBMC mRNA level of TNF-α; but had lower levels of lymphocytes and plasma glutathione peroxidase 4 (GPX4). There were negative correlations of plasma GPX4 and cystine/glutamate transporter-11 (SLC7A11) with TNF-α, IL-6, and IL-17, and positive correlations of ACSL4 with inflammatory markers in plasma and PBMCs. The plasma levels of TNF-α, IL-6, IL-17, and ACSL4 were significantly lower after treatment than at baseline, but there were higher post-treatment levels of lymphocytes, GPX4, and SLC7A11. Patients with long COVID had a lower baseline level of plasma SLC7A11. CONCLUSION: Ferroptosis is activated during the progression of COVID-19, and a low baseline level of a ferroptosis marker (SLC7A11) may indicate an increased risk for long COVID-19. Ferroptosis has potential as a clinical indicator of long COVID and as a therapeutic target.

12.
ACS Mater Au ; 4(1): 45-54, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38221919

RESUMO

Lithium aluminum layered double hydroxide chlorides (LADH-Cl) have been widely used for lithium extraction from brine. Elevation of the performances of LADH-Cl sorbents urgently requires knowledge of the composition-structure-property relationship of LADH-Cl in lithium extraction applications, but these are still unclear. Herein, combining the phase equilibrium experiments, advanced solid characterization methods, and theoretical calculations, we constructed a cyclic work diagram of LADH-Cl for lithium capture from aqueous solution, where the reversible (de)hydration and (de)intercalation induced phase evolution of LADH-Cl dominates the apparent lithium "adsorption-desorption" behavior. It is found that the real active ingredient in LADH-Cl type lithium sorbents is a dihydrated LADH-Cl with an Al:Li molar ratio varying from 2 to 3. This reversible process indicates an ultimate reversible lithium (de)intercalation capacity of ∼10 mg of Li per g of LADH-Cl. Excessive lithium deintercalation results in the phase structure collapse of dihydrated LADH-Cl to form gibbsite. When interacting with a concentrated LiCl aqueous solution, gibbsite is easily converted into lithium saturated intercalated LADH-Cl phases. By further hydration with a diluted LiCl aqueous solution, this phase again converts to the active dihydrated LADH-Cl. In the whole cyclic progress, lithium ions thermodynamically favor staying in the Al-OH octahedral cavities, but the (de)intercalation of lithium has kinetic factors deriving from the variation of the Al-OH hydroxyl orientation. The present results provide fundamental knowledge for the rational design and application of LADH-Cl type lithium sorbents.

13.
Small Methods ; 8(3): e2300747, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37990399

RESUMO

Low-dose computed tomography screening can increase the detection for non-small-cell lung cancer (NSCLC). To improve the diagnostic accuracy of early-stage NSCLC detection, ultrasensitive methods are used to detect cell-free DNA (cfDNA) 5-hydroxymethylcytosine (5hmC) in plasma. Genome-wide 5hmC is profiled in 1990 cfDNA samples collected from patients with non-small cell lung cancer (NSCLC, n = 727), healthy controls (HEA, n = 1,092), as well as patients with small cell lung cancer (SCLC, n = 41), followed by sample randomization, differential analysis, feature selection, and modeling using a machine learning approach. Differentially modified features reflecting tissue origin. A weighted diagnostic model comprised of 105 features is developed to compute a detection score for each individual, which showed an area under the curve (AUC) range of 86.4%-93.1% in the internal and external validation sets for distinguishing lung cancer from HEA controls, significantly outperforming serum biomarkers (p < 0.001). The 5hmC-based model detected high-risk pulmonary nodules (AUC: 82%)and lung cancer of different subtypes with high accuracy as well. A highly sensitive and specific blood-based test is developed for detecting lung cancer. The 5hmC biomarkers in cfDNA offer a promising blood-based test for lung cancer.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Ácidos Nucleicos Livres , Neoplasias Pulmonares , Carcinoma de Pequenas Células do Pulmão , Humanos , Biomarcadores Tumorais/genética , Carcinoma Pulmonar de Células não Pequenas/diagnóstico , Carcinoma Pulmonar de Células não Pequenas/genética , Ácidos Nucleicos Livres/genética , Detecção Precoce de Câncer/métodos , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/genética , Estudos de Casos e Controles
14.
Food Chem ; 439: 138158, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38071846

RESUMO

Total antioxidant capacity (TAC) is vital for food quality evaluation. The emergence of various nanozymes with TMB as substrate offered a new avenue for TAC detection due to simple operation and fast response, but a long-standing challenge is its low activity at physiological pH, which may account for the discrepancy between the measured TAC and the actual antioxidant capacity in vivo. Herein, Au doping was explored to break the pH limitation of g-C3N4 nanosheets (CNNS) photozyme. The catalytic activities of Au@CNNS at pH 4.0 and 7.4 were 14.9- and 6.2-fold higher than that of CNNS at pH 4. The neutral pH photozymatic activity (photosensitized oxidation of TMB, oxidase mimic) of Au@CNNS was explored for sensitivity TAC detection (LOD: 1.0 µM TE), which featured more convenient operations and higher sensitivity over the DPPH assay. The proposed Au@CNNS-based photozymatic colorimetric method was explored for accurate detection of TAC in drinks and juices.


Assuntos
Antioxidantes , Colorimetria , Colorimetria/métodos , Oxirredução , Concentração de Íons de Hidrogênio
15.
ChemMedChem ; 19(2): e202300467, 2024 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-38031642

RESUMO

As a critical epigenetic modulator of gene expression, histone deacetylases (HDACs) have been involved in the pathogenesis and therapeutic investigation of cancer. Quinolizidine alkaloid sophoridine is known to have anticancer efficacy but with limited indication. By incorporating the pharmacophore of the HDAC inhibitor into the ring-opened sophoridine core, a new series of sophoridine hydroxamic acid derivatives were synthesized. After structure-activity studies, a selected compound was found to exert significant cytotoxicity in triple-negative breast cancer CAL-51 cells (IC50 1.17 µM), and demonstrated low nanomolar inhibitory potency toward HDAC1/3/6. Cellular functional assays indicated that this compound was able to induce apoptosis and cause accumulation of cells in the S phase of the cell cycle. Western blot analysis revealed it to decrease the expression of DNMT1, DNMT3a and DNMT3b by down-regulating phosphor-ERK1/2. Furthermore, treatment with this compound proved to block the PI3K/AKT/mTOR signaling in the PI3KCA and PTEN-mutant CAL-51 cells. Collectively, this work provides a novel lead compound for the development of potential therapeutics against triple-negative breast cancers, possibly mesenchymal-like subtype.


Assuntos
Antineoplásicos , Neoplasias de Mama Triplo Negativas , Humanos , Inibidores de Histona Desacetilases/farmacologia , Matrinas , Alcaloides Quinolizidínicos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/metabolismo , Linhagem Celular Tumoral , Fosfatidilinositol 3-Quinases/metabolismo , Ácidos Hidroxâmicos/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Proliferação de Células , Histona Desacetilase 1 , Relação Estrutura-Atividade , Ensaios de Seleção de Medicamentos Antitumorais
16.
Small ; : e2310992, 2023 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-38155518

RESUMO

With the rapid development and increasing popularity of electric vehicles and wearables, battery safety has become a leading focus in the field of energy storage research. Specifically, aluminum-ion batteries are gaining increasing attention as low-cost energy-storage systems with high safety levels and theoretical energy density. However, the dense alumina passivation layer on the aluminum anode surface and slow kinetic performance of commonly used ionic liquid electrolytes still render poor performance. This report presents a new type of aluminum-derived lithium-ion battery (ALIB) that maintains a certain discharge performance under damaging conditions, including continuous bending, high- and low-temperature environments, and shearing. This new ALIB effectively meets the current demand for flexible and wearable batteries. The prepared ALIB achieves a stable cycle of 130 mAh g-1 specific capacity and ≈260 Wh kg-1 theoretical energy density at a wide voltage platform of 2 V and a test temperature of 25 °C without undergoing combustion. Additionally, the study analyzes the reaction mechanism of this ALIB based on density functional theory and conducts ex situ XRD and XPS analyses to elucidate the underlying storage mechanism.

17.
Biomaterials ; 302: 122339, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37778054

RESUMO

Efficiently reawakening immune cells, including T cells and macrophages, to eliminate tumor cells is a promising strategy for cancer treatment, but remains a huge challenge nowadays. Herein, a nanoassembly formed by doxorubicin (DOX)-conjugated polyphosphoester (PP-(hDOX)) and CD47-targeting siRNA (siCD47) via electrostatic and π-π stacking interactions, termed as PP-(hDOX&siCD47), was developed to reawaken the T cell and macrophage-mediated anticancer activity. The PP-(hDOX&siCD47) could efficiently blockade antiphagocytic signal by downregulation of CD47 expression to reactive macrophage-mediated anticancer immunotherapy. Moreover, the conjugated DOX of PP-(hDOX&siCD47) can perform the chemotherapy towards tumor cells and also elicit the T cell-mediated anticancer immune response via immunogenic cell death (ICD) effect. Therefore, the PP-(hDOX&siCD47) treatment could significantly increase M1-like macrophages proportion and tumor infiltration of CD8+ T cells, while the proportions of regulatory T cells (Treg) and myeloid-derived suppressor cells (MDSC) were considerably reduced in tumor tissue, eventually achieving significantly tumor growth inhibition. Overall, this study provides a simple siRNA and DOX codelivery approach to simultaneously elicit the macrophage- and T cell-mediated anticancer immune response for cancer therapy.


Assuntos
Antígeno CD47 , Neoplasias , RNA Interferente Pequeno/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Imunoterapia , Macrófagos/metabolismo , Imunidade , Linhagem Celular Tumoral , Neoplasias/tratamento farmacológico
18.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 39(10): 910-916, 2023 Oct.
Artigo em Chinês | MEDLINE | ID: mdl-37882715

RESUMO

Objective To investigate the effects of YAP on the occurrence and progression of acute liver failure by regulating the ferroptosis pathway and its underlying mechanism. Methods A total of 20 8-week-old C57BL/6 mice were randomly divided into four groups: a control group, an acute liver failure model group, a YAP agonist XMU-MP-1 treatment group and a YAP inhibitor verteporfin treatment group, five mice for each group. HE staining was used to observe the pathological changes of hepatic inflammation and necrosis. Plasma alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels were detected by liver biochemistry. Iron (Fe), malondialdehyde (MDA), glutathione (GSH) determination kits were used to measure their levels in liver tissues of each group. The changes of hepatocyte mitochondrial in each group were observed by electron microscopy. Real time PCR and Western blot analysis were used to detect the mRNA and protein expressions of YAP, glutathione peroxidase 4 (GPX4) and 5-lipoxygenase (5-LOX). Results Compared with the control group, mice in the acute liver failure model group and the YAP inhibitor verteporfin treatment group showed severe liver tissue congestion with inflammatory cell infiltration and structural damage to hepatic lobules. Liver injury was alleviated in the XMU-MP-1 treatment group. With the occurrence of liver failure, plasma ALT and AST levels significantly increased, and liver function was improved in XMU-MP-1 treatment group. Electron microscopy showed that mitochondria in hepatocytes of mice with liver failure became smaller and bilayer membrane density increased, while mitochondria changes in the XMU-MP-1 group were alleviated. In addition, the acute liver failure model group showed an increase in Fe and MDA contents, decreased protein expressions of GPX4, and enhanced expression of 5-LOX, suggesting that ferroptosis was involved in acute liver failure in C57BL/6 mice. Ferroptosis was inhibited by activation of YAP. Conclusion Activation of YAP may ameliorate liver injury by inhibiting ferroptosis.


Assuntos
Ferroptose , Falência Hepática Aguda , Falência Hepática , Proteínas de Sinalização YAP , Animais , Camundongos , Glutationa , Falência Hepática Aguda/tratamento farmacológico , Camundongos Endogâmicos C57BL , Verteporfina , Proteínas de Sinalização YAP/metabolismo
19.
Sci Bull (Beijing) ; 68(22): 2779-2792, 2023 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-37863773

RESUMO

Immunotherapy has revolutionized cancer therapy, using chemical or biological agents to reinvigorate the immune system. However, most of these agents have poor tumor penetration and inevitable side effects that complicate therapeutic outcomes. Electrical stimulation (ES) is a promising alternative therapy against cancers that does not involve chemical or biological agents but is limited in the fabrication and operation of complex micrometer-scale ES devices. Here, we present an optically microprinted flexible interdigital electrode with a gold-plated polymer microneedle array to generate alternating electric fields for cancer treatment. A flexible microneedle-array-integrated interdigital electrode (FMIE) was fabricated by combining optical 3D microprinting and electroless plating processes. FMIE-mediated ES of cancer cells induced necrotic cell death through mitochondrial Ca2+ overload and increased intracellular reactive oxygen species (ROS) production. This led to the release of damage-associated molecular patterns that activated the immune response and potentiated immunogenic cell death (ICD). FMIE-based ES has an excellent safety profile and systemic anti-tumor effects, inhibiting the growth of primary and distant tumors as well as melanoma lung metastasis. FMIE-based ES-driven cancer immunomodulation provides a new pathway for drug-free cancer therapy.


Assuntos
Imunoterapia , Neoplasias Pulmonares , Humanos , Eletrodos , Estimulação Elétrica , Fatores Biológicos
20.
Cell Signal ; 112: 110907, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37769890

RESUMO

Atherosclerosis (AS), a metabolic disorder, is usually caused by chronic inflammation. LETM1 Domain-Containing Protein 1 (LETMD1) is a mitochondrial outer membrane protein required for mitochondrial structure. This study aims to evaluate the functional role of LETMD1 in endothelial pathogenesis of AS. Oxidized low-density lipoprotein (ox-LDL)-induced human umbilical vein endothelial cells (HUVECs) and high-fat diet apolipoprotein E-deficient (ApoE-/-) mice were used to establish in vitro and in vivo models, respectively. Recombinant adenovirus vectors were constructed to investigate the role of LETMD1 in AS. mRNA sequencing was used to explore the effect of LETMD1 overexpression on gene expression in ox-LDL-induced HUVECs. A dual-luciferase reporting assay and chromatin immunoprecipitation (ChIP)-PCR were further conducted to verify the relationship between KLF4 and LETMD1. Results showed that LETMD1 was highly expressed in the aortas of atherosclerotic animals. LETMD1 overexpression reduced the expression of inflammatory factors, pyroptosis, ROS production, and NF-κB activation in ox-LDL-induced HUVECs, whereas LETMD1 knockdown had the opposite impact. LETMD1 overexpression was involved in regulating gene expression in ox-LDL-induced HUVECs. Overexpression of LETMD1 in mice reduced serum lipid levels as well as atherosclerotic lesions in the aortic roots. Furthermore, LETMD1 overexpression suppressed inflammatory reactions, cell pyroptosis, nuclear p65 protein level, cell apoptosis, and ROS generation in the aortas of AS mice. KLF4 (Krüppel-like factor 4) was found to be the transcriptional regulator of LETMD1. In conclusion, LETMD1, a target of KLF4, hinders endothelial inflammation and pyroptosis, which is a mechanism inhibiting the development of atherosclerosis.


Assuntos
Aterosclerose , MicroRNAs , Animais , Humanos , Camundongos , Apoptose , Aterosclerose/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Inflamação/metabolismo , Lipoproteínas LDL/farmacologia , Lipoproteínas LDL/metabolismo , MicroRNAs/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Piroptose , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA