Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Anal Chem ; 96(19): 7738-7746, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38690966

RESUMO

Telomerase is an important biomarker for early diagnosis of cancers, but current telomerase assays usually rely on measuring the extension products of telomerase substrates, which increases the assay complexity. More evidence indicates that human telomerase RNA (hTR), as a core component of telomerase, is positively correlated with the telomerase activity. Herein, we demonstrate the development of a duplex-specific nuclease (DSN)-propelled 3D quantum dot (QD) nanoassembly with two-step Föster resonance energy transfer (FRET) for the one-step sensing of hTR in breast cancer cells and tissues. This assay involves only one hairpin probe modified with a Cy5 at the sixth base from the 5'-biotin end and a BHQ2 at the 3'-terminus, which integrates three functions of target recognition, target recycling amplification, and signal readout. The anchoring of the hairpin probe on the 605QD surface results in the formation of a 3D 605QD-Cy5-probe-BHQ2 nanoassembly in which two-step FRET occurs among the 605QD, Cy5, and BHQ2 quencher. Notably, the formation of 605QD-Cy5-probe-BHQ2 nanoassembly facilitates the reduction of background signal and the increase of signal-to-background ratio due to its dense, highly oriented nucleic acid shell-induced steric hindrance effect. This assay can achieve one-step and rapid detection of hTR with a detection limit of 2.10 fM, which is the simplest and most rapid hTR assay reported so far. Moreover, this assay can efficiently distinguish single-base mismatched sequences, and it can discriminate the hTR level between breast cancer patients and healthy donors with a high accuracy of 100%, with great prospects for early diagnosis of cancers.


Assuntos
Neoplasias da Mama , Transferência Ressonante de Energia de Fluorescência , Pontos Quânticos , RNA , Telomerase , Humanos , Telomerase/metabolismo , Telomerase/análise , Pontos Quânticos/química , RNA/metabolismo , RNA/análise , Feminino , Carbocianinas/química , Técnicas Biossensoriais/métodos
2.
Biochem Biophys Rep ; 38: 101694, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38586826

RESUMO

Crotonylation is an importantly conserved post-translational modification, which is completely different from acetylation. In recent years, it has been confirmed that crotonylation occurs on histone and non-histone. Crotonylated Histone primarily affects gene expression through transcriptional regulation, while non-histone Crotonylation mainly regulates protein functions including protein activity, localization, and stability, as well as protein-protein interactions. The change in protein expression and function will affect the physiological process of cells and even cause disease. Reviewing previous studies, this article summarizes the mechanisms of histone and non-histone crotonylation in regulating diseases and cellular physiological processes to explore the possibility of precise regulation of crotonylation sites as potential targets for disease treatment.

3.
Atherosclerosis ; 392: 117527, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38583286

RESUMO

BACKGROUND AND AIMS: Diabetic atherosclerotic vascular disease is characterized by extensive vascular calcification. However, an elevated blood glucose level alone does not explain this pathogenesis. We investigated the metabolic markers underlying diabetic atherosclerosis and whether extracellular Hsp90α (eHsp90α) triggers vascular endothelial calcification in this particular metabolic environment. METHODS: A parallel human/animal model metabolomics approach was used. We analyzed 40 serum samples collected from 24 patients with atherosclerosis and from the STZ-induced ApoE-/- mouse model. A multivariate statistical analysis of the data was performed, and mouse aortic tissue was collected for the assessment of plaque formation. In vitro, the effects of eHsp90α on endothelial cell calcification were assessed by serum analysis, Western blotting and immunoelectron microscopy. RESULTS: Diabetic ApoE-/- mice showed more severe plaque lesions and calcification damage. Stearamide, oleamide, l-thyroxine, l-homocitrulline and l-citrulline are biomarkers of diabetic ASVD; l-thyroxine was downregulated in both groups, and the thyroid sensitivity index was correlated with serum Hsp90α concentration. In vitro studies showed that eHsp90α increased Runx2 expression in endothelial cells through the LRP1 receptor. l-thyroxine reduced the increase in Runx2 levels caused by eHsp90α and affected the distribution and expression of LRP1 through hydrogen bonding with glutamine at position 1054 in the extracellular segment of LRP1. CONCLUSIONS: This study provides a mechanistic link between characteristic serum metabolites and diabetic atherosclerosis and thus offers new insight into the role of extracellular Hsp90α in promoting vascular calcification.


Assuntos
Diabetes Mellitus Experimental , Proteínas de Choque Térmico HSP90 , Camundongos Knockout para ApoE , Placa Aterosclerótica , Tiroxina , Calcificação Vascular , Humanos , Animais , Proteínas de Choque Térmico HSP90/metabolismo , Calcificação Vascular/metabolismo , Calcificação Vascular/patologia , Masculino , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/complicações , Tiroxina/sangue , Feminino , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Pessoa de Meia-Idade , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Camundongos , Aterosclerose/metabolismo , Aterosclerose/patologia , Angiopatias Diabéticas/metabolismo , Angiopatias Diabéticas/patologia , Angiopatias Diabéticas/etiologia , Metabolômica/métodos , Células Endoteliais/metabolismo , Células Endoteliais/efeitos dos fármacos , Metaboloma/efeitos dos fármacos , Idoso , Camundongos Endogâmicos C57BL , Doenças da Aorta/metabolismo , Doenças da Aorta/patologia , Doenças da Aorta/sangue , Biomarcadores/sangue , Células Endoteliais da Veia Umbilical Humana/metabolismo
4.
Anal Chim Acta ; 1298: 342395, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38462345

RESUMO

DNA-modifying enzymes act as critical regulators in a wide range of genetic functions (e.g., DNA damage & repair, DNA replication), and their aberrant expression may interfere with regular genetic functions and induce various malignant diseases including cancers. DNA-modifying enzymes have emerged as the potential biomarkers in early diagnosis of diseases and new therapeutic targets in genomic research. Consequently, the development of highly specific and sensitive biosensors for the detection of DNA-modifying enzymes is of great importance for basic biomedical research, disease diagnosis, and drug discovery. Single-molecule fluorescence detection has been widely implemented in the field of molecular diagnosis due to its simplicity, high sensitivity, visualization capability, and low sample consumption. In this paper, we summarize the recent advances in single-molecule counting-based biosensors for DNA-modifying enzyme (i.e, alkaline phosphatase, DNA methyltransferase, DNA glycosylase, flap endonuclease 1, and telomerase) assays in the past four years (2019 - 2023). We highlight the principles and applications of these biosensors, and give new insight into the future challenges and perspectives in the development of single-molecule counting-based biosensors.


Assuntos
Técnicas Biossensoriais , DNA , Biomarcadores
5.
Anal Chem ; 96(13): 5323-5330, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38501982

RESUMO

Oxidative DNA damage is closely associated with the occurrence of numerous human diseases and cancers. 8-Oxo-7,8-dihydroguanine (8-oxoG) is the most prevalent form of DNA damage, and it has become not only an oxidative stress biomarker but also a new epigenetic-like biomarker. However, few approaches are available for the locus-specific detection of 8-oxoG because of the low abundance of 8-oxoG damage in DNA and the limited sensitivity of existing assays. Herein, we demonstrate the elongation and ligation-mediated differential coding for label-free and locus-specific analysis of 8-oxoG in DNA. This assay is very simple without the involvement of any specific labeled probes, complicated steps, and large sample consumption. The utilization of Bsu DNA polymerase can specifically initiate a single-base extension reaction to incorporate dATP into the opposite position of 8-oxoG, endowing this assay with excellent selectivity. The introduction of cascade amplification reaction significantly enhances the sensitivity. The proposed method can monitor 8-oxoG with a limit of detection of 8.21 × 10-19 M (0.82 aM), and it can identify as low as 0.001% 8-oxoG damage from a complex mixture with excessive undamaged DNAs. This method can be further applied to measure 8-oxoG levels in the genomic DNA of human cells under diverse oxidative stress, holding prospect potential in the dynamic monitoring of critical 8-oxoG sites, early clinical diagnosis, and gene damage-related biomedical research.


Assuntos
DNA Polimerase Dirigida por DNA , DNA , Guanina/análogos & derivados , Humanos , DNA/genética , DNA Polimerase Dirigida por DNA/metabolismo , Dano ao DNA , Biomarcadores , Reparo do DNA
6.
Anal Chem ; 96(11): 4647-4656, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38441540

RESUMO

Telomerase is a basic reverse transcriptase that maintains the telomere length in cells, and accurate and specific sensing of telomerase in living cells is critical for medical diagnostics and disease therapeutics. Herein, we demonstrate for the first time the construction of an enzymatically controlled DNA nanomachine with endogenous apurinic/apyrimidinic endonuclease 1 (APE1) as a driving force for one-step imaging of telomerase in living cells. The DNA nanomachine is designed by rational engineering of substrate probes and reporter probes embedded with an enzyme-activatable site (i.e., AP site) and their subsequent assembly on a gold nanoparticle (AuNP). Upon recognition and cleavage of the AP site in the substrate probe by APE1, the loop of the substrate probe unfolds, exposing telomeric primer (TP) with the 3'-OH end. Subsequently, the TP is elongated by telomerase at the 3'-OH end to generate a long telomeric product. The resultant telomeric product acts as a swing arm that can hybridize with a reporter probe to initiate the APE1-powered walking reaction, ultimately generating a significantly enhanced fluorescence signal. Notably, endogenous APE1 is used as the driving force of the DNA nanomachine, avoiding the introduction of exogenous auxiliary cofactors into the cellular microenvironment. Owing to the high kinetics and high amplification efficiency of the APE1-powered DNA nanomachine, this strategy enables one-step sensitive sensing of telomerase in vitro and in vivo. It can successfully discriminate telomerase activity between cancer cells and normal cells, screen telomerase inhibitors, and monitor the variations of telomerase activity in living cells, offering a prospective platform for molecular diagnostics and drug discovery.


Assuntos
Nanopartículas Metálicas , Telomerase , Humanos , Telomerase/metabolismo , Ouro/química , Nanopartículas Metálicas/química , DNA/química , Células HeLa , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo
7.
Anal Chem ; 96(11): 4487-4494, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38451469

RESUMO

O6-Methylguanine-DNA-methyltransferase (MGMT) is a demethylation protein that dynamically regulates the O6-methylguanine modification (O6 MeG), and dysregulated MGMT is implicated in various malignant tumors. Herein, we integrate demethylation-activated DNAzyme with a single quantum dot nanosensor to sensitively detect MGMT in breast tissues. The presence of MGMT induces the demethylation of the O6 MeG-caged DNAzyme and the restoration of catalytic activity. The activated DNAzyme then specifically cleaves the ribonucleic acid site of hairpin DNA to expose toehold sequences. The liberated toehold sequence may act as a primer to trigger a cyclic exponential amplification reaction for the generation of enormous signal strands that bind with the Cy5/biotin-labeled probes to form sandwich hybrids. The assembly of sandwich hybrids onto 605QD obtains 605QD-dsDNA-Cy5 nanostructures, inducing efficient FRET between the 605QD donor and Cy5 acceptor. Notably, the introduction of a mismatched base in hairpin DNA can greatly minimize the background and improve the signal-to-noise ratio. This nanosensor achieves a dynamic range of 1.0 × 10-8 to 0.1 ng/µL and a detection limit of 155.78 aM, and it can screen MGMT inhibitors and monitor cellular MGMT activity with single-cell sensitivity. Moreover, it can distinguish the MGMT level in tissues of breast cancer patients and healthy persons, holding great potential in clinical diagnostics and epigenetic research studies.


Assuntos
Carbocianinas , DNA Catalítico , Guanina/análogos & derivados , Pontos Quânticos , Humanos , DNA Catalítico/metabolismo , O(6)-Metilguanina-DNA Metiltransferase/metabolismo , DNA/química , Desmetilação
8.
Chem Commun (Camb) ; 60(22): 3075-3078, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38404229

RESUMO

We construct a simple fluorescent biosensor for single-molecule counting of flap endonuclease 1 (FEN1) based on ligase detection reaction (LDR) amplification-activated CRISPR-Cas12a. This biosensor exhibits excellent selectivity and high sensitivity with a detection limit (LOD) of 1.31 × 10-8 U. Moreover, it can be employed to screen the FEN1 inhibitors and quantitatively measure the FEN1 activity in human cells and breast cancer tissues, holding great promise in clinical diagnosis and drug discovery.


Assuntos
Técnicas Biossensoriais , Neoplasias , Humanos , Endonucleases Flap , Sistemas CRISPR-Cas/genética , Corantes , Descoberta de Drogas
9.
Nano Lett ; 24(7): 2360-2368, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38347661

RESUMO

Accurate and sensitive analysis of circulating tumor cells (CTCs) in human blood provides a non-invasive approach for the evaluation of cancer metastasis and early cancer diagnosis. Herein, we demonstrate the controllable assembly of a quantum dot (QD)-based aptasensor guided by CRISPR/Cas12a for direct measurement of CTCs in human blood. We introduce a magnetic bead@activator/recognizer duplex core-shell structure to construct a multifunctional platform for the capture and direct detection of CTCs in human blood, without the need for additional CTC release and re-identification steps. Notably, the introduction of magnetic separation ensures that only a target-induced free activator can initiate the downstream catalysis, efficiently avoiding the undesired catalysis triggered by inappropriate recognition of the activator/recognizer duplex structure by crRNAs. This aptasensor achieves high CTC-capture efficiency (82.72%) and sensitive detection of CTCs with a limit of detection of 2 cells mL-1 in human blood, holding great promise for the liquid biopsy of cancers.


Assuntos
Células Neoplásicas Circulantes , Pontos Quânticos , Humanos , Células Neoplásicas Circulantes/patologia , Pontos Quânticos/química , Sistemas CRISPR-Cas/genética , Biópsia Líquida
10.
Eur J Med Res ; 29(1): 89, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38291496

RESUMO

BACKGROUND: Kidney cancer is an immunogenic solid tumor, characterized by high tumor burden and infiltration of CD8+ T cells. Although immunotherapy targeting the PD1/CTLA-4 axis has demonstrated excellent clinical efficacy, clinical outcomes in most patients are poor. METHODS: We used the RNA sequencing data from the GEO database for KIRC GSE121636 and normal kidney tissue GSE131685, and performed single-cell analysis for cluster identification, pathway enrichment, and CD8+ T cell-associated gene identification. Subsequently, the significance of different CD8+ T-cell associated gene subtypes was elucidated by consensus clustering, pathway analysis, mutated gene analysis, and KIRC immune microenvironment analysis in the TCGA-KIRC disease cohort. Single gene analysis identified LAG3 as the most critical CD8+ T-cell-associated gene and its function was verified by cell phenotype and immunohistochemistry in KIRC. RESULTS: In the present study, CD8+ T-cell associated genes in KIRC were screened, including GZMK, CD27, CCL4L2, FXYD2, LAG3, RGS1, CST7, DUSP4, CD8A, and TRBV20-1 and an immunological risk prognostic model was constructed (risk score = - 0.291858656434841*GZMK - 0.192758342489394*FXYD2 + 0.625023643446193*LAG3 + 0.161324477181591*RGS1 - 0.380169045328895*DUSP4 - 0.107221347575037*TRBV20-1). LAG3 was identified and proved as the most critical CD8+ T cell-associated gene in KIRC. CONCLUSION: We proposed and constructed an immunological risk prognostic model for CD8+ T cell-associated genes and identified LAG3 as a pivotal gene for KIRC progression and CD8+ T-cell infiltration. The model comprehensively explained the immune microenvironment and provided novel immune-related therapeutic targets and biomarkers in KIRC.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Humanos , Prognóstico , Linfócitos T CD8-Positivos , Rim , Carcinoma de Células Renais/genética , Biologia Computacional , Neoplasias Renais/genética , Microambiente Tumoral/genética
11.
Front Immunol ; 15: 1288240, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38292868

RESUMO

Background: Disulfidptosis, an emerging type of programmed cell death, plays a pivotal role in various cancer types, notably impacting the progression of kidney renal clear cell carcinoma (KIRC) through the tumor microenvironment (TME). However, the specific involvement of disulfidptosis within the TME remains elusive. Methods: Analyzing 41,784 single cells obtained from seven samples of KIRC through single-cell RNA sequencing (scRNA-seq), this study employed nonnegative matrix factorization (NMF) to assess 24 disulfidptosis regulators. Pseudotime analysis, intercellular communication mapping, determination of transcription factor activities (TFs), and metabolic profiling of the TME subgroup in KIRC were conducted using Monocle, CellChat, SCENIC, and scMetabolism. Additionally, public cohorts were utilized to predict prognosis and immune responses within the TME subgroup of KIRC. Results: Through NMF clustering and differential expression marker genes, fibroblasts, macrophages, monocytes, T cells, and B cells were categorized into four to six distinct subgroups. Furthermore, this investigation revealed the correlation between disulfidptosis regulatory factors and the biological traits, as well as the pseudotime trajectories of TME subgroups. Notably, disulfidptosis-mediated TME subgroups (DSTN+CD4T-C1 and FLNA+CD4T-C2) demonstrated significant prognostic value and immune responses in patients with KIRC. Multiple immunohistochemistry (mIHC) assays identified marker expression within both cell clusters. Moreover, CellChat analysis unveiled diverse and extensive interactions between disulfidptosis-mediated TME subgroups and tumor epithelial cells, highlighting the TNFSF12-TNFRSF12A ligand-receptor pair as mediators between DSTN+CD4T-C1, FLNA+CD4T-C2, and epithelial cells. Conclusion: Our study sheds light on the role of disulfidptosis-mediated intercellular communication in regulating the biological characteristics of the TME. These findings offer valuable insights for patients with KIRC, potentially guiding personalized immunotherapy approaches.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Humanos , Microambiente Tumoral , Carcinoma de Células Renais/terapia , Comunicação Celular , Imunoterapia , Neoplasias Renais/terapia , Rim
12.
Biosens Bioelectron ; 247: 115966, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38147719

RESUMO

Methylation is one of the most prevalent epigenetic modifications in natural organisms, and the processes of methylation and demethylation are closely associated with cell growth, differentiation, gene transcription and expression. Abnormal methylation may lead to various human diseases including cancers. Simultaneous analysis of multiple DNA demethylases remains a huge challenge due to the requirement of diverse substrate probes and scarcity of proper signal transduction strategies. Herein, we propose a sensitive and label-free method for simultaneous monitoring of multiple DNA demethylases on the basis of demethylation-activated light-up dual-color RNA aptamers. The presence of targets AlkB homologue-3 (ALKBH3) and fat mass and obesity-associated enzyme (FTO) erases the methyl group in DNA substrate probes, activating the ligation-mediate bidirectional transcription amplification reaction to produce enormous Spinach and Mango aptamers. The resulting RNA aptamers (i.e., Spinach and Mango aptamers) can bind with their cognate nonfluorescent fluorogens (DFHBI and TO1-biotin) to significantly improve the fluorescence signals. This aptamersensor shows high specificity and sensitivity with a limit of detection (LOD) of 8.50 × 10-14 M for ALKBH3 and 6.80 × 10-14 M for FTO, and it can apply to screen DNA demethylase inhibitors, evaluate DNA demethylase kinetic parameters, and simultaneously measure multiple endogenous DNA demethylases in a single cell. Importantly, this aptamersensor can accurately discriminate the expressions of ALKBH3 and FTO between healthy tissues and non-small cell lung cancer (NSCLC) patient tissues, offering a powerful platform for clinical diagnosis and drug discovery.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , RNA/química , Aptâmeros de Nucleotídeos/metabolismo , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/genética , DNA/metabolismo , Desmetilação , Pulmão/metabolismo , Homólogo AlkB 3 da Dioxigenase Dependente de alfa-Cetoglutarato/metabolismo , Dioxigenase FTO Dependente de alfa-Cetoglutarato/química , Dioxigenase FTO Dependente de alfa-Cetoglutarato/metabolismo
13.
Environ Sci Pollut Res Int ; 30(47): 104713-104725, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37704821

RESUMO

Diabetes could impact many ocular tissues. However, the association of the serum aldehydes with diabetes-related eye diseases (DED) remains unclear. Thus, we aimed to examine the above relationship from the general US population of 2013-2014 National Health and Nutrition Examination Survey (NHANES). The multivariable logistic regression and Bayesian kernel machine regression (BKMR) were used to analyze the effect of serum aldehydes on the risk of DED. Pearson's correlation analysis, the restricted cubic spline (RCS) model, and the linear regression were performed to explore the association between the serum aldehydes and other parameters. The multivariable linear regression was conducted to further underlie the relationship between the serum aldehydes and the glycohemoglobin A1c (HbA1c) in DED participants. Although no significant association was observed between the serum aldehydes and the risk of DED by the multivariable logistic regression and BKMR, the Pearson correlation revealed a positive association between the HbA1c level and the serum level of heptanaldehyde and isopentanaldehyde in DED participants. The RCS model confirmed the above linear correlation. After adjusting for the cofounding factor of smoking, the multivariable linear regression revealed a significant association between the serum level of heptanaldehyde and the HbA1c level in DED participants. Our results suggest that aldehyde exposure did not significantly increase the risk of DED, while heptanaldehyde was the risk factor for increased HbA1c in DED population.


Assuntos
Complicações do Diabetes , Diabetes Mellitus , Oftalmopatias , Humanos , Inquéritos Nutricionais , Estudos Transversais , Aldeídos , Hemoglobinas Glicadas , Teorema de Bayes
14.
J Endovasc Ther ; 30(5): 798-803, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37272112

RESUMO

PURPOSE: To report a successful case of pseudoaneurysm of the superior mesenteric artery (SMA) caused by infected endocarditis treated with a covered stent. CASE REPORT: A patient was diagnosed with infective endocarditis and 2 months later a proximal SMA pseudoaneurysm was identified on computed tomography. Daptomycin was started on admission and continued for approximately 4 months until the inflammatory markers normalized, and then the SMA pseudoaneurysm was successfully excluded with a stent-graft and antibiotics were continued for 1 year after the procedure. There were no associated complications or recurrences at the 3-year follow-up. CONCLUSION: Placing a covered stent with a full course of antibiotics before and after surgery may be a successful alternative to open surgery in the treatment of pseudoaneurysms of the SMA due to infective endocarditis. CLINICAL IMPACT: This case report reports a rare case of pseudoaneurysm of the superior mesenteric artery due to infective endocarditis, which was successfully treated with an overlapping stent and confirmed by complete imaging data at a three-year follow-up. This report suggests that endovascular treatment may be an alternative to open surgery in the treatment of pseudoaneurysms of the superior mesenteric artery caused by infective endocarditis.


Assuntos
Falso Aneurisma , Endocardite Bacteriana , Procedimentos Endovasculares , Humanos , Falso Aneurisma/diagnóstico por imagem , Falso Aneurisma/etiologia , Falso Aneurisma/cirurgia , Artéria Mesentérica Superior/diagnóstico por imagem , Artéria Mesentérica Superior/cirurgia , Resultado do Tratamento , Procedimentos Endovasculares/efeitos adversos , Endocardite Bacteriana/complicações , Endocardite Bacteriana/diagnóstico por imagem , Stents/efeitos adversos , Antibacterianos/uso terapêutico
15.
Plant Dis ; 2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37227442

RESUMO

Lophatherum gracile Brongn. is an important Chinese herbal medicine. Since 2016, a leaf spot disease has appeared on L. gracile seedlings in the traditional Chinese medicine resource garden of the Institute of Botany, Chinese Academy of Sciences, Jiangsu Province (32.06°N, 118.83°E). About approximately 80% of the seedlings suffered from the disease. The disease spot usually starts from the leaf margin, round or irregular, with yellow halo at the edge of the lesion. To isolate the pathogen, four diseased leaves were collected from four different seedlings and there are 6 sections from each diseased leaf. The leaf sections were surface sterilized in 75% alcohol for 30 s and 1.5% NaClO for 90 s, rinsed three times in sterilized distilled water, plated on potato dextrose agar (PDA). Pure cultures were obtained by monosporic isolation. Eleven isolates were obtained (isolate rate of 55%) and identified as Epicoccum sp.. Thus, a representative isolate, DZY3-3 was used for the further study. After 7 days of culture, the colony produced white aerial hyphae, and reddish orange pigment on the underside. The chlamydospores were produced, either multicellular or unicellular. The colony produced pycnidia and conidia after nearly three weeks of cultivation on oatmeal ager OA. Conidia were unicellular, hyaline, oval, and were 4.9 to 6.4 x 2.0 to 3.3 µm (n=35). In addition, a brown discoloration was produced on malt extract agar (MEA) after using the 1 mol/L NaOH solution for 1 h. These characteristics were consistent with the description of Epicoccum sp. (Chen et al. 2017). To comfirm this identification, the internal transcribed spacer (ITS), large subunit ribosomal RNA (LSU), beta-tubulin (TUB) and RNA polymerase II second largest subunit (RPB2) regions were amplified using the detailed primer pairs described by White et al., Rehner and Samuels, Woudenberg et al. and Liu et al., respectively. They had 99.8-100% homology to the ITS (GenBank no. MN215613, 504/505 bp), LSU (MN533800, 809/809 bp), TUB (MN329871, 333/333 bp), and RPB2 (MG787263, 596/596 bp) sequences of E. latusicollum in the GenBank database. A neighbor-joining phylogenetic tree was generated based on the concatenated sequences of all the above regions in MEGA7. The DZY3-3 clustered in the E. latusicollum clade with 100% bootstrap support. Koch's postulates were performed by spray inoculation (1×106 spores/mL) on the left sides of leaves of three healthy L. gracile seedlings and detached leaves, using isolate DZY3-3, while sterilized water served as the control was sprayed on the right sides of leaves. All plants and detached leaves were covered with clear polyethylene bags to maintain about 80% relative humidity at 25℃. Whether in vivo or in vitro pathogenicity test showed similar symptoms to those occurred in the field after 5 days post inoculation. No symptoms occurred on controls. The experiment was repeated three times. Subsequently, the same fungus was reisolated and identified from leaves of three inoculated seedlings. The E. latusicollum has a very wide host range. For example, it has been reported to cause stalk rot on Maize (Xu et al. 2022) and cause leaf spot on Tobacco in China (Guo et al. 2020). To our knowledge, it is the first report of E. latusicollum causing leaf spot on L. gracile in the world. This study will provide an important reference for the biology of E. latusicollum and the distribution of the disease.

16.
Cell Biol Int ; 47(7): 1198-1208, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36950779

RESUMO

Papillary thyroid carcinoma (PTC) is the most prevalent cancer in endocrine system. However, the pathogenic mechanism underlying tumor recurrence remains unclear. RING finger protein (RNF) family plays a crucial role in cancers whereas the role of RNF150 in PTC requires investigation. Our study aimed to explore the function and molecular mechanism of RNF150 in PTC. Here, we extracted data from The Cancer Genome Atlas-THCA (TCGA-THCA) data set to investigate the expression and prognostic value of RNF150 in THCA. We found that RNF150 was lowly expressed in THCA and its high expression indicated favorable prognosis in THCA patients. RNF150 could inhibit the proliferation of PTC cells and suppress p38 phosphorylation both in vitro and in vivo. Meanwhile, the knockdown of RNF150 significantly promoted the proliferation of PTC cells and the phosphorylation of p38, which could be reversed by p38 inhibitor. Besides, RNF150 could interact with ASK1 and promoted its ubiquitination. The overexpression of ASK1 exerted opposite effects against RNF150 in PTC cells. In PTC specimens, RNF150 and ASK1 shared reversed expression pattern. In conclusion, our study revealed that RNF150 could suppress the proliferation of PTC by inactivating p38 pathway and promoting ASK1 ubiquitination, which provided novel targets for PTC treatment.


Assuntos
Neoplasias da Glândula Tireoide , Humanos , Câncer Papilífero da Tireoide/metabolismo , Neoplasias da Glândula Tireoide/metabolismo , Linhagem Celular Tumoral , Transdução de Sinais , Fosforilação , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Movimento Celular/genética , Proteínas de Membrana/metabolismo
17.
Materials (Basel) ; 16(4)2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36837234

RESUMO

Microscopic content segregation is among the important reasons for the anisotropy of mechanical properties in the cast-rolled sheets of the 7B05 aluminum alloy. It is of great significance to study the uniformity of aluminum alloys in terms of the microscopic composition and structure. In this study, a precise method for composition quantification based on micro-beam X-ray fluorescence spectroscopy is established by parameter optimization and a calibration coefficient. Furthermore, this method was applied for exploring and quantifying the relationship between recrystallization and deformation microstructures. The results show that the comprehensive measurement effects of all elements are the best when the X-ray tube voltage is 50 kV, the current is 150 µA, and the single-pixel scanning time is 100 ms. After verification, the sum of differences between the measured values and the standard values for all elements using the calibration coefficient is only 0.107%, which confirms the accuracy of the optimized quantitative method. Three types of segregation indexes in national standards were used to capture small differences, and finally ensure that the segregation degrees of elements are Ti > Fe > Cr > Cu > Mn > Zr > Zn > Al. The quantitative segregation results obtained by the spatial-mapping method show that the difference in the content of Al and Zn is approximately 0.2% between the recrystallization region and the deformation region, the difference in the content of Fe and Ti is 0.018% and 0.013%, the difference in the content of Cr, Cu and Zr is approximately 0.01%, and the difference in the content of Mn is not obvious, only 0.004%.

18.
Anal Chim Acta ; 1281: 341895, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38783732

RESUMO

APOBEC3A (A3A) is a cytidine deaminase with critical roles in molecular diagnostics. Herein, we demonstrate the enzymatic DNA repairing amplification-powered construction of an Au nanoparticle-based nanosensor for single-molecule monitoring of A3A activity in cancer cells. Target A3A can convert cytosine (C) in substrate probe to uracil (U), and then the template binds with substrate probe to form a dsDNA containing U/A base pairs. Uracil DNA glycosylase (UDG) excises the U base to produce an apurinic/apyrimidinic (AP) site that can be cleaved by apurinic/apyrimidic endonuclease 1 (APE1) to obtain the substrate fragment with 3'-OH end. Subsequently, the substrate fragment initiates cyclic enzymatic repairing amplification (ERA), releasing trigger-1 and trigger-2. The resultant trigger-1 can act as the primer to induce multiple cycles of cyclic ERA, producing numerous trigger-1 and trigger-2. The hybridization of trigger-2 with signal probe forms the dsDNA duplexes with an AP site, inducing the cyclic cleavage of signal probes by APE1 to release abundant Cy5 molecules from the AuNPs. Released Cy5 molecules can be easily quantified by single-molecule imaging. This nanosensor allows for specific and sensitive detection of A3A activity with a detection limit of 0.855 aM, and it can further measure kinetic parameters, screen inhibitors, and quantify endogenous A3A activity at the single-cell level, with prospect application in disease diagnostics and therapy.


Assuntos
Ouro , Nanopartículas Metálicas , Ouro/química , Nanopartículas Metálicas/química , Humanos , Técnicas Biossensoriais/métodos , Reparo do DNA , Técnicas de Amplificação de Ácido Nucleico , Citosina Desaminase/metabolismo , Citosina Desaminase/química , DNA/química , Imagem Individual de Molécula/métodos , DNA Liase (Sítios Apurínicos ou Apirimidínicos)
19.
Materials (Basel) ; 15(16)2022 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-36013903

RESUMO

The quantitative study of the relationship between material composition, microstructure and properties is of great importance for the improvement in material properties. In this study, the continuous data of elemental composition, recrystallization, hardness and undissolved phase distribution of the same sample in the range of 60 to 150 square millimeters were obtained by high-throughput testing instrument. The distribution characteristics and rules of a single data set were analyzed. In addition, each data set was divided into micro-areas according to the corresponding relationship of location, and the mapping between multi-source heterogeneous micro-area data sets was established to analyze and quantify the correlation between material composition, structure and hardness. The conclusions are as follows: (1) the average size of the insoluble phase in the middle of the two materials is larger than that of the surface, but due to the existence of central segregation, the average area of the T4 insoluble phase showed an abnormal decrease; (2) there was positive micro-segregation of Al, Cr, Ti, and Zr elements, and negative micro-segregation of Zn, Cu, and Fe elements in the recrystallized grains of the T5 middle segregation zone; (3) the growth process of the insoluble phase was synchronous with the recrystallization proportion and the size of the recrystallized grains; (4) the composition segregation and recrystallized coarse grains were the main reasons for the formation of low hardness zone in T4 and T5 materials, respectively.

20.
Anal Chem ; 94(32): 11425-11432, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35916620

RESUMO

N6-methyladenosine modification as an mRNA modification in mammalian cells is dynamically reversible, regulated by RNA demethylase [e.g., fat mass and obesity-associated protein (FTO)]. The abnormal expression of FTO is closely related to numerous diseases (e.g., various cancers and obesity). Herein, we demonstrate the single-molecule counting of FTO in human cancer cells and breast tissues based on a T7 RNA polymerase-mediated rolling circle transcription (RCT) amplification-driven clustered regularly interspaced short palindromic repeat (CRISPR)─Cas12a. When FTO is present, it demethylates the DNA substrate, initiating the DpnII-mediated cleavage reaction. After magnetic separation, the cleaved DNA fragments trigger the T7 RNA polymerase-mediated RCT amplification, activating CRISPR-/Cas12a-mediated cleavage of signal probes and releasing abundant FAM molecules that are simply counted via single-molecule detection. In this assay, only target FTO can generate CRISPR RNAs, efficiently improving detection specificity. Moreover, the integration of single-molecule detection with magnetic separation achieves zero background and effectively enhances detection sensitivity. This method can specifically and sensitively monitor FTO activity with a limit of detection of 1.20 × 10-13 M, and it may measure FTO at the single-cell level. Furthermore, it may accurately discriminate the FTO expression level in breast tissues between healthy persons and breast cancer patients and screen the FTO inhibitors as well, with great potential in clinical diagnosis and drug discovery.


Assuntos
Sistemas CRISPR-Cas , Neoplasias , Adenosina/metabolismo , Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética , Dioxigenase FTO Dependente de alfa-Cetoglutarato/metabolismo , Animais , Humanos , Mamíferos/metabolismo , Neoplasias/genética , Obesidade/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA