Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 947: 174621, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-38986703

RESUMO

Speciation of heavy metal-based nanoparticles (NPs) in paddy soils greatly determines their fate and potential risk towards food safety. However, quantitative understanding of such distinctive species remains challenging, because they are commonly presented at trace levels (e.g., sub parts-per-million) and extremely difficult to be fractionated in soil matrices. Herein, we propose a state-of-art non-destructive strategy for effective extraction and quantification of cadmium (Cd)-NPs - the most widespread heavy metal in paddy soils - by employing single particle inductively coupled plasma mass spectrometry (spICP-MS) and tetrasodium pyrophosphate (TSPP) as the extractant. Acceptable extraction efficiencies (64.7-80.4 %) were obtained for spiked cadmium sulfide nanoparticles (CdS-NPs). We demonstrate the presence of indigenous Cd-NPs in all six Cd-contaminated paddy soils tested, with a number concentration ranging from 2.20 × 108 to 3.18 × 109 particles/g, representing 17.0-50.4 % of the total Cd content. Furthermore, semi-spherical and irregular CdS-NPs were directly observed as an important form of the Cd-NPs in paddy soils, as characterized by transmission electron microscopy coupled with energy-dispersive X-ray spectroscopy (TEM-EDX). This research marks a significant step towards directly observing indigenous Cd-NPs at trace levels in paddy soil, offering a useful tool for quantitative understanding of the biogeochemical cycling of heavy metal-based NPs in complex matrices.

2.
Environ Sci Technol ; 58(28): 12467-12476, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38966939

RESUMO

The effect of Zn on Cd accumulation in rice varies under flooding and drainage conditions, and the underlying mechanism during uptake and transport from the soil to grains remains unclear. Isotope fractionation and gene expression were investigated using pot experiments under distinct water regimes and with Zn addition to gain a deeper understanding of the molecular effects of Zn on Cd uptake and transport in rice. The higher OsHMA2 expression but constitutively lower expression of zinc-regulated, iron-regulated transporter-like protein (ZIP) family genes in roots under the drainage regime than the flooding regime caused the enrichment of nonheavy Zn isotopes in the shoots relative to roots but minimally affected Cd isotopic fractionation. Drainage regime seem to exert a striking effect on the root-to-shoot translocation of Zn rather than Cd, and increased Zn transport via OsHMA2. The changes in expression patterns in response to Zn addition were similar to those observed upon switching from the flooding to drainage regime, except for OsNRAMP1 and OsNRAMP5. However, soil solution-to-rice plants and root-to-shoot fractionation toward light Zn isotopes with Zn addition (Δ66Znrice plant-soil solution = -0.49 to -0.40‰, Δ66Znshoot-root = -0.36 to -0.27‰) indicated that Zn transport occurred via nonspecific uptake pathways and OsHMA2, respectively. Accordingly, the less pronounced and minimally varied Cd isotope fractionation suggested that OsNRAMP5 and OsHMA2 are crucial for Cd uptake and root-to-shoot transport, respectively, facilitating Cd accumulation in grains. This study demonstrated that a high Zn supply promotes Cd uptake and root-to-shoot transport in rice by sharing distinct pathways, and by utilizing a non-Zn-sensitive pathway with a high affinity for Cd.


Assuntos
Cádmio , Oryza , Solo , Zinco , Oryza/metabolismo , Oryza/genética , Cádmio/metabolismo , Zinco/metabolismo , Solo/química , Raízes de Plantas/metabolismo , Transporte Biológico , Poluentes do Solo/metabolismo
3.
J Agric Food Chem ; 72(3): 1500-1508, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38165827

RESUMO

Iron (Fe) isotopes were utilized to provide insights into the temporal changes underlying Fe uptake and translocation during rice growth (tillering, jointing, flowering, and maturity stages) in soil-rice systems under typical flooding-drainage alternation. Fe isotopic composition (δ56Fe values) of the soil solution generally decreased at vegetative stages in flooding regimes but increased during grain-filling. Fe plaques were the prevalent source of Fe uptake, as indicated by the concurrent increase in the δ56Fe values of Fe plaques and rice plants during rice growth. The increasing fractionation magnitude from stem/nodes I to flag leaves can be attributed to the preferred phloem transport of light isotopes toward grains, particularly during grain-filling. This study demonstrates that rice plants take up heavy Fe isotopes from Fe plaque and soil solution via strategy II during flooding and the subsequent drainage period, respectively, thereby providing valuable insights into improving the nutritional quality during rice production.


Assuntos
Oryza , Poluentes do Solo , Isótopos de Ferro , Raízes de Plantas/química , Poluentes do Solo/análise , Solo , Cádmio/análise , Isótopos
4.
Environ Sci Technol ; 58(3): 1771-1782, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38086743

RESUMO

Biochar has demonstrated significant promise in addressing heavy metal contamination and methane (CH4) emissions in paddy soils; however, achieving a synergy between these two goals is challenging due to various variables, including the characteristics of biochar and soil properties that influence biochar's performance. Here, we successfully developed an interpretable multitask deep learning (MTDL) model by employing a tensor tracking paradigm to facilitate parameter sharing between two separate data sets, enabling a synergy between Cd and CH4 mitigation with biochar amendments. The characteristics of biochar contribute similar weightings of 67.9% and 62.5% to Cd and CH4 mitigation, respectively, but their relative importance in determining biochar's performance varies significantly. Notably, this MTDL model excels in custom-tailoring biochar to synergistically mitigate Cd and CH4 in paddy soils across a wide geographic range, surpassing traditional machine learning models. Our findings deepen our understanding of the interactive effects of Cd and CH4 mitigation with biochar amendments in paddy soils, and they also potentially extend the application of artificial intelligence in sustainable environmental remediation, especially when dealing with multiple objectives.


Assuntos
Aprendizado Profundo , Oryza , Solo , Cádmio , Metano , Inteligência Artificial , Carvão Vegetal
5.
J Environ Sci (China) ; 138: 19-31, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38135388

RESUMO

Zero-valent iron (ZVI) is a promising material for the remediation of Cd-contaminated paddy soils. However, the effects of ZVI added during flooding or drainage processes on cadmium (Cd) retention remain unclear. Herein, Cd-contaminated paddy soil was incubated for 40 days of flooding and then for 15 days of drainage, and the underlying mechanisms of Cd immobilization coupled with Fe/S/N redox processes were investigated. The addition of ZVI to the flooding process was more conducive to Cd immobilization. Less potential available Cd was detected by adding ZVI before flooding, which may be due to the increase in paddy soil pH and newly formed secondary Fe minerals. Moreover, the reductive dissolution of Fe minerals promoted the release of soil colloids, thereby increasing significantly the surface sites and causing Cd immobilization. Additionally, the addition of ZVI before flooding played a vital role in Cd retention after soil drainage. In contrast, the addition of ZVI in the drainage phase was not conducive to Cd retention, which might be due to the rapid decrease in soil pH that inhibited Cd adsorption and further immobilization on soil surfaces. The findings of this study demonstrated that Cd availability in paddy soil was largely reduced by adding ZVI during the flooding period and provide a novel insight into the mechanisms of ZVI remediation in Cd-contaminated paddy soils.


Assuntos
Oryza , Poluentes do Solo , Cádmio/análise , Ferro , Solo , Poluentes do Solo/análise , Minerais
6.
Environ Sci Technol ; 57(46): 17920-17929, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37755710

RESUMO

Anions accompanying inorganic fertilizers, such as chloride and sulfate ions, potentially affect the solubility, uptake, and transport of Cd to rice grains. However, the role of anions in controlling Cd transport in the soil-soil solution-Fe plaque-rice plant continuum remains poorly understood. Cd isotope ratios were applied to Cd-contaminated soil pots, hydroponic rice, and adsorption experiments with or without KCl and K2SO4 treatments to decipher transport processes in the complex soil-rice system. The chloride and sulfate ions increased the Cd concentrations in the soil solution, Fe plaque, and rice plants. Accordingly, the magnitude of positive fractionation from soil to the soil solution was less pronounced, but that between soil and Fe plaque or rice plant is barely varied. The similar isotope composition of Fe plaque and soil, and the similar fractionation magnitude between Fe plaque and the solution and between goethite and the solution, suggested that desorption-sorption between iron oxides and the solution could be important at the soil-soil solution-Fe plaque continuum. This study reveals the roles of chloride and sulfate ions: (i) induce the mobility of light Cd isotopes from soil to the soil solution, (ii) chloro-Cd and sulfato-Cd complexes contribute to Cd immobilization in the Fe plaque and uptake into roots, and (iii) facilitate second leaves/node II-to-grain Cd transport within shoots. These results provide insights into the anion-induced Cd isotope effect in the soil-rice system and the roles of anions in facilitating Cd migration and transformation.


Assuntos
Oryza , Poluentes do Solo , Ferro , Cádmio , Cloretos/farmacologia , Solo , Sulfatos , Isótopos/farmacologia , Raízes de Plantas/química
7.
Water Res ; 242: 120180, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37320876

RESUMO

The interfacial electron transfer (ET) between electron shuttling compounds and iron (Fe) oxyhydroxides plays a crucial role in the reductive dissolution of Fe minerals and the fate of surface-bound arsenic (As). However, the impact of exposed facets of highly crystalline hematite on reductive dissolution and As immobilization is poorly understood. In this study, we systematically investigated the interfacial processes of the electron shuttling compound cysteine (Cys) on various facets of hematite and the reallocations of surface-bound As(III) or As(V) on the respective surfaces. Our results demonstrate that the ET process between Cys and hematite generates Fe(II) and leads to reductive dissolution, with more Fe(II) generated on {001} facets of exposed hematite nanoplates (HNPs). Reductive dissolution of hematite leads to significantly enhanced As(V) reallocations on hematite. Nevertheless, upon the addition of Cys, a raipd release of As(III) can be halted by its prompt re-adsorption, leaving the extent of As(III) immobilization on hematite unchanged throughout the course of reductive dissolution. This is due to that Fe(II) can form new precipitates with As(V), a process that is facet-dependent and influenced by water chemistry. Electrochemical analysis reveals that HNPs exhibit higher conductivity and ET ability, which is beneficial for reductive dissolution and As reallocations on hematite. These findings highlight the facet-dependent reallocations of As(III) and As(V) facilitated by electron shuttling compounds and have implications for the biogeochemical processes of As in soil and subsurface environments.


Assuntos
Arsênio , Arsênio/química , Elétrons , Compostos Férricos/química , Compostos Ferrosos , Oxirredução
8.
J Agric Food Chem ; 71(22): 8367-8380, 2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37218180

RESUMO

Thionins are important antibacterial peptides in plants. However, the roles of plant thionins, especially the defensin-dissimilar thionins, in alleviating heavy-metal toxicity and accumulation remain unclear. Here, cadmium (Cd)-related functions and mechanisms of the defensin-dissimilar rice thionin OsThi9 were investigated. OsThi9 was significantly upregulated in response to Cd exposure. OsThi9 was localized to the cell wall and was shown to bind Cd; these characters help to increase Cd tolerance. In Cd-exposed rice plants, OsThi9 overexpression significantly increased cell wall Cd binding, decreasing upward Cd translocation and subsequent Cd accumulation in shoots and straw, while OsThi9 knockout had inverse effects. Importantly, in rice plants grown in Cd-contaminated soils, OsThi9 overexpression significantly reduced Cd accumulation in brown rice (decrease of ≥ 51.8%) without negatively impairing the crop yield and essential elements. Thus, OsThi9 plays an important role in the alleviation of Cd toxicity and accumulation and has significant potential for developing low-Cd rice.


Assuntos
Oryza , Poluentes do Solo , Tioninas , Cádmio/metabolismo , Tioninas/metabolismo , Oryza/genética , Oryza/metabolismo , Poluentes do Solo/metabolismo , Defensinas/genética , Defensinas/metabolismo , Solo
9.
J Hazard Mater ; 452: 131246, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-36989790

RESUMO

Nickel is generally released from flooded soils; however, the key Ni transformation processes in soils that are freshly contaminated by Ni2+ during anoxic-oxic alteration remain unclear. We developed a kinetic model to investigate the Ni transformation in paddy soils under anoxic and oxic conditions based on the results of the seven-step sequential extraction, determination of dissolved and soil organic matter, and surface site quantification, which provide the kinetic data of different Ni fractions, organic matter, and reactive sites for modeling. The dissolved, exchangeable, and specifically adsorbed Ni was gradually transferred to fulvic complex, humic complex, Fe-Mn oxide bound, and sulfide bound Ni after 40 d of anoxic incubation due to the increase in pH and soil surface sites, which were mainly induced by Fe(III) oxide reduction and soil organic matter release. The introduction of oxygen triggered a rapid release of Ni, which was ascribed to the decrease in pH and soil surface sites caused by Fe(II) oxidation and carbon re-immobilization. Kinetic modeling demonstrated that complexation with soil organic matter dominated Ni immobilization under anoxic conditions, while organic matter and Fe-Mn oxides contributed similarly to Ni release under oxic conditions, although the majority of Ni remained complexed with soil organic matter. These findings are important for the evaluation and prediction of Ni behavior in paddy soils with exogenous Ni during flooding-drainage practices.

10.
Sci Total Environ ; 873: 162325, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36813190

RESUMO

Grain filling is the key period that causes excess cadmium (Cd) accumulation in rice grains. Nevertheless, uncertainties remain in distinguishing the multiple sources of Cd enrichment in grains. To better understand the transport and redistribution of Cd to grains upon drainage and flooding during grain filling, Cd isotope ratios and Cd-related gene expression were investigated in pot experiments. The results showed that the Cd isotopes in rice plants were much lighter than those in soil solutions (∆114/110Cdrice-soil solution = -0.36 to -0.63 ‰) but moderately heavier than those in Fe plaques (∆114/110Cdrice-Fe plaque = 0.13 to 0.24 ‰). Calculations revealed that Fe plaque might serve as the source of Cd in rice (69.2 % to 82.6 %), particularly upon flooding at the grain filling stage (82.6 %). Drainage at the grain filling stage yielded a larger extent of negative fractionation from node I to the flag leaves (∆114/110Cdflag leaves-node I = -0.82 ± 0.03 ‰), rachises (∆114/110Cdrachises-node I = -0.41 ± 0.04 ‰) and husks (∆114/110Cdrachises-node I = -0.30 ± 0.02 ‰), and significantly upregulated the OsLCT1 (phloem loading) and CAL1 (Cd-binding and xylem loading) genes in node I relative to that upon flooding. These results suggest that phloem loading of Cd into grains and transport of Cd-CAL1 complexes to flag leaves, rachises and husks were simultaneously facilitated. Upon flooding of grain filling, the positive fractionation from the leaves, rachises and husks to the grains (∆114/110Cdflag leaves/rachises/husks-node I = 0.21 to 0.29 ‰) is less pronounced than those upon drainage (∆114/110Cdflag leaves/rachises/husks-node I = 0.27 to 0.80 ‰). The CAL1 gene in flag leaves is down-regulated relative to that upon drainage. Thus, the supply of Cd from the leaves, rachises and husks to the grains is facilitated during flooding. These findings demonstrate that the excess Cd was purposefully transported to grain via xylem-to-phloem within nodes I upon the drainage during grain filling, and the expression of genes responsible for encoding ligands and transporters together with isotope fractionation could be used to tracking the source of Cd transported to rice grain.


Assuntos
Oryza , Poluentes do Solo , Cádmio/análise , Oryza/química , Solo/química , Grão Comestível/química , Isótopos/análise , Poluentes do Solo/análise , Expressão Gênica
11.
Environ Sci Technol ; 57(5): 2175-2185, 2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-36693009

RESUMO

Chemical oxidation of As(III) by iron (Fe) oxyhydroxides has been proposed to occur under anoxic conditions and may play an important role in stabilization and detoxification of As in subsurface environments. However, this reaction remains controversial due to lack of direct evidence and poorly understood mechanisms. In this study, we show that As(III) oxidation can be facilitated by Fe oxyhydroxides (i.e., goethite) under anoxic conditions coupled with the reduction of structural Fe(III). An excellent electron balance between As(V) production and Fe(III) reduction is obtained. The formation of an active metastable Fe(III) phase at the defective surface of goethite due to atom exchange is responsible for the oxidation of As(III). Furthermore, the presence of defects (i.e., Fe vacancies) in goethite can noticeably enhance the electron transfer (ET) and atom exchange between the surface-bound Fe(II) and the structural Fe(III) resulting in a two time increase in As(III) oxidation. Atom exchange-induced regeneration of active goethite sites is likely to facilitate As(III) coordination and ET with structural Fe(III) based on electrochemical analysis and theoretical calculations showing that this reaction pathway is thermodynamically and kinetically favorable. Our findings highlight the synergetic effects of defects in the Fe crystal structure and Fe(II)-induced catalytic processes on anoxic As(III) oxidation, shedding a new light on As risk management in soils and subsurface environments.


Assuntos
Compostos de Ferro , Ferro , Ferro/química , Compostos de Ferro/química , Minerais/química , Oxirredução , Compostos Ferrosos/química , Compostos Férricos/química
12.
J Environ Sci (China) ; 125: 470-479, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36375930

RESUMO

The flooding and drainage of paddy fields has great effects on the transformation of heavy metals, however, the transformation of Cr in basalt-derived paddy soil with high geological background values was less recognized. The typical basalt-derived paddy soil was incubated under alternating redox conditions. The Cr fractions and the dynamics of Fe/N/S/C were examined. The HCl-extractable Cr increased under anaerobic condition and then decreased during aerobic stage. The UV-vis spectra of the supernatant showed that amounts of colloids were released under anaerobic condition, and then re-aggregated during aerobic phase. The scanning transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS) revealed that Fe oxides were reduced and became dispersed during anaerobic stage, whereas Fe(II) was oxidized and recrystallized under aerobic condition. Based on these results, a kinetic model was established to further distinguish the relationship between the transformation of Cr and Fe. During anaerobic phase, the reduction of Fe(III) oxides not only directly released the structurally bound Cr, but also enhanced the breakdown of soil aggregation and dissolution of organic matter causing indirect mobilization of Cr. During aerobic phase, the oxidation of Fe(II) and further recrystallization of newly formed Fe(III) oxides might induce the re-aggregation of soil colloids and further incorporation of Cr. In addition, the kinetic model of Cr and Fe transformation was further verified in the pot experiment. The model-based findings demonstrated that the Cr transformation in the basalt-derived paddy soil with high geological background values was highly driven by redox sensitive iron cycling.


Assuntos
Poluentes do Solo , Solo , Solo/química , Ferro/química , Cromo/análise , Poluentes do Solo/análise , Oxirredução , Óxidos/química , Compostos Ferrosos
13.
J Environ Sci (China) ; 126: 138-152, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36503743

RESUMO

The OsLCD gene, which has been implicated in cadmium (Cd) accumulation in rice, might be a useful target for CRISPR/Cas9 editing. However, the effects of OsLCD gene editing on Cd accumulation, plant growth, and yield traits remain unknown. Here, we used CRISPR/Cas9 to generate oslcd single mutants from indica and japonica rice cultivars. We also generated osnramp5 single mutants and oslcd osnramp5 double mutants in the indica background. When grown in Cd-contaminated paddy soils, all oslcd single mutants accumulated less Cd than the wild types (WTs). Consistent with this, oslcd single mutants grown in Cd-contaminated hydroponic culture accumulated significantly less Cd in the shoots as compared to WTs. This decrease in accumulation probably resulted from the reduction of Cd translocation under Cd stress. Oxidative damage also decreased, and plant growth increased in all oslcd single mutant seedlings as compared to WTs in the presence of Cd. Plant growth and most yield traits, as well essential element concentrations in rice seedling shoots, brown rice, and rice straw, were similar between oslcd single mutants and WTs. In the presence of Cd, Cd concentrations in the brown rice and shoots of oslcd osnramp5 double mutants were significantly decreased compared with WTs as well as osnramp single mutants. Our results suggested that OsLCD knockout may reduce Cd accumulation alone or in combination with other knockout mutations in a variety of rice genotypes; unlike OsNramp5 mutations, OsLCD knockout did not reduce essential element contents. Therefore, OsLCD knockout might be used to generate low-Cd rice germplasms.


Assuntos
Cádmio , Oryza , Cádmio/toxicidade , Oryza/genética , Sistemas CRISPR-Cas , Plântula , Hidroponia
14.
Chemosphere ; 309(Pt 1): 136612, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36179923

RESUMO

Mercury (Hg) is a toxic and nonessential element for organisms, and its contamination in the environment is a global concern. Previous research has shown that Hg stress may cause severe damage to rice roots; however, the transcriptomic changes in roots and physio-biochemical responses in leaves to different levels of Hg stress are not fully understood. In the present study, rice seedlings were exposed to 20, 80, and 160 µM HgCl2 for three days in hydroponic experiments. The results showed that the majority of Hg was accumulated in rice roots after Hg exposure, and the 80- and 160-µM Hg stresses significantly increased the root-to-shoot translocation factors relative to 20-µM Hg stress, resulting in elevated Hg concentrations in rice shoots. Only the 160-µM Hg stress significantly inhibited root growth compared with the control, while photosynthesis capacity in leaves was significantly reduced under Hg stress. RNA transcriptome sequencing analyses of the roots showed that common responsive differentially expressed genes were strongly associated with glutathione metabolism, amino acid biosynthesis, and secondary metabolite metabolism, which may play significant roles in Hg accumulation by rice plants. Nine crucial genes identified by protein-protein interaction network analysis may be used as candidate target genes for further investigation of the detoxification mechanism, encoding proteins involved in jasmonic acid synthesis, sugar metabolism, allene oxide synthase, glutathione peroxidase, dismutase, and catalase. Furthermore, physio-biochemical analyses of the leaves indicated that higher production of reactive oxygen species was induced by Hg stress, while glutathione and antioxidant enzymes may play crucial roles in Hg detoxification. Our findings provide transcriptomic and physio-biochemical features of rice roots and shoots, which advance our understanding of the responsive and detoxification mechanisms in rice under different levels of Hg stress.


Assuntos
Mercúrio , Oryza , Oryza/metabolismo , Catalase/metabolismo , Mercúrio/análise , Transcriptoma , Antioxidantes/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Glutationa Peroxidase/metabolismo , Raízes de Plantas/metabolismo , Plântula/metabolismo , Glutationa/metabolismo , Aminoácidos/metabolismo , Açúcares/metabolismo , RNA/metabolismo
15.
Chemosphere ; 307(Pt 2): 135805, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35917979

RESUMO

Seawater intrusion can cause environmental risks to paddy soils around estuaries, but the impacts on the availability of heavy metals are still unclear. River water and sea water were collected along the river of an estuary. A stirred-flow experiment was conducted to examine the Cd desorption behavior in Cd-contaminated paddy soil. While the pH increased with increasing salinity levels, more Cd was released with increasing salinity, suggesting that Cd competition by cations and complexation by anions, but not pH, dominated the release of Cd from soils. Moreover, paddy soil was incubated at different salinities under alternating redox conditions. The availability of Cd, as indicated by the diffusive gradients in thin film (DGT), became relatively high with increasing salinity levels during the initial anaerobic and later aerobic stages. The available Cd fractions substantially decreased under anaerobic condition, and then rapidly increased under aerobic condition. When oxygen was introduced into the system, Cd associated with organic matter and Fe-Mn oxides were released, and oxidative dissolution of Cd sulfides was observed, especially in the high salinity treatment. Seawater intrusion affects biogeochemical cycles and can promote rapid export of NH4+, Fe2+, and SO42- in paddy soils, especially in soils with high salinity. Our findings demonstrated that the high salinity content in paddy soil significantly enhanced the availability of Cd, especially during the drainage stage.


Assuntos
Metais Pesados , Oryza , Poluentes do Solo , Cádmio/análise , Metais Pesados/análise , Oryza/química , Óxidos/análise , Oxigênio , Água do Mar , Solo/química , Poluentes do Solo/análise , Sulfetos , Água
16.
Water Res ; 219: 118587, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35605391

RESUMO

Fe(II) redox chemistry is a pivotal process of biogeochemical Fe cycle and the transformation of organic pollutants in subsurface aquifers, while its interfacial reactivity on iron oxides with varying surface chemistries remains largely unexplored. In this study, the redox processes of Fe(II) on two hematite with highly exposed {001} and {110} facets and their impacts on the transformation of nitrobenzene were investigated. Results suggest that Fe(II) adsorption is the rate-limiting step of the redox chain reactions, controlling the reduction potential (EH). Nitrobenzene activates the facet electron transfer on hematite, leading to nitrobenzene reduction and Fe(II) oxidation. Moreover, {001} facet exhibits a higher reactivity and electron transport efficiency than {110} facet, which is attributed to a lower site density (0.809 #Fe/nm2) and a lower EH of hematite {001} facet than that of {110} facet. It is worth noting that the facet-dependent reduction activity is more intense at low pH or high Fe(II) activity. A slight dissolution of {110} facet was observed, indicating hematite {001} facet exhibits higher thermodynamic stability than {110} facet. This study confirms the facet-dependent reducing activity of surface bound Fe(II) on hematite, providing a new perspective for in-depth understanding of the interfacial reactions on hematite. The findings of this work broaden the biogeochemical process of Fe cycle in subsurface environments and its impact on the fate of organic pollutants in groundwater.


Assuntos
Poluentes Ambientais , Compostos Férricos , Compostos Ferrosos , Nitrobenzenos , Oxirredução
17.
J Agric Food Chem ; 70(8): 2564-2573, 2022 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-35175773

RESUMO

Rice can simultaneously absorb Fe2+ via a strategy I-like system and Fe(III)-phytosiderophore via strategy II from soil. Still, it remains unclear which strategy and source of Fe dominate under distinct water conditions. An isotope signature combined with gene expression was employed to evaluate Fe uptake and transport in a soil-rice system under flooded and drained conditions. Rice of flooded treatment revealed a similar δ56Fe value to that of soils (Δ56Ferice-soil = 0.05‰), while that of drained treatment was lighter than that of the soils (Δ56Ferice-soil = -0.41‰). Calculations indicated that 70.4% of Fe in rice was from Fe plaque under flooded conditions, while Fe was predominantly from soil solution under drained conditions. Up-regulated expression of OsNAAT1, OsTOM2, and OsYSL15 was observed in the root of flooded treatment, while higher expression of OsIRT1 was observed in the drained treatment. These isotopic and genetic results suggested that the Fe(III)-DMA uptake from Fe plaque and Fe2+ uptake from soil solution dominated under flooded and drained conditions, respectively.


Assuntos
Oryza , Poluentes do Solo , Expressão Gênica , Ferro/metabolismo , Isótopos/metabolismo , Oryza/genética , Oryza/metabolismo , Solo , Poluentes do Solo/metabolismo
18.
J Hazard Mater ; 425: 127780, 2022 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-34801297

RESUMO

The redox process of electron shuttles like cysteine on iron minerals under aerobic conditions may largely determine the fate of arsenic (As) in soils, while the interfacial processes and underlying mechanisms are barely explored. This work systematically investigates the interfacial oxidation processes of As(III) on goethite induced by cysteine. Results show that the addition of cysteine significantly enhances the oxidation efficiency (~ 40%) of As(III) (C0: 10 mg/L) by goethite at pH 7 under aerobic conditions, which is 19.5 times of that without cysteine. cysteine induces Fe(III) reduction on the surface of goethite, and the generation absorbed Fe(II) species play an important role in As(III) oxidation. In particular, the further complexation of Fe(II) with cysteine is thermodynamically favorable for electron transfer, leading to an enhanced As(III) oxidation efficiency. The oxidation efficiency of As(III) in the goethite/cysteine system increases by increasing cysteine concentration and decreases by elevating pH conditions. In addition, evidence indicates that •O2- radicals account for approximately 80% of total oxidized As(III). Meanwhile, only 16% of As(III) oxidation can be attributed to the formed •OH radicals. This work provides new insight into the role of organic electron shuttling compounds in determining As cycling in soils.


Assuntos
Arsenitos , Compostos de Ferro , Elétrons , Compostos Férricos , Minerais , Oxirredução , Estresse Oxidativo
19.
J Environ Sci (China) ; 115: 294-307, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-34969457

RESUMO

Silicon (Si) has been shown to alleviate Cd stress in rice. Here, we investigated the beneficial effects of foliar Si in an indica rice Huanghuazhan (HHZ). Our results showed that foliar Si increases the dry weight and decreases Cd translocation in Cd-exposed rice at the grain-filling stage only, implying that the filling stage is critical for foliar Si to reduce Cd accumulation. We also investigated the transcriptomics in flag leaves (FLs), spikelets (SPs), and node Is (NIs) of Cd-exposed HHZ after foliar Si application at the filling stage. Importantly, the gene expression profiles associated with the Si-mediated alleviation of Cd stress were tissue specific, while shared pathways were mediated by Si in Cd-exposed rice tissues. Furthermore, after the Si treatment of Cd-exposed rice, the ATP-binding cassette (ABC)-transporters were mostly upregulated in FL and SP, while the bivalent cation transporters were mostly downregulated in FL and NI, possibly helping to reduce Cd accumulation. The genes associated with essential nutrient transporters, carbohydrate and secondary metabolite biosynthesis, and cytochrome oxidase activity were mostly upregulated in Cd-exposed FL and SP, which may help to alleviate oxidative stress and improve plant growth under Cd exposure. Interestingly, genes responsible for signal transduction were negatively regulated in FL, but positively regulated in SP, by foliar Si. Our results provide transcriptomic evidence that foliar Si plays an active role in alleviating the effects of Cd exposure in rice. In particular, foliar Si may alter the expression pattern of genes associated with transport, biosynthesis and metabolism, and oxidation reduction.


Assuntos
Oryza , Poluentes do Solo , Cádmio/análise , Cádmio/toxicidade , Oryza/genética , Silício , Poluentes do Solo/análise , Transcriptoma
20.
Sci Total Environ ; 806(Pt 2): 150633, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34592274

RESUMO

Multiple processes are involved in Cd transfer in rice plants, including root uptake, xylem loading, and immobilization. These processes can be mediated by membrane transporters and can alter Cd speciation by binding Cd to different organic ligands. However, it remains unclear which processes control Cd transport in rice in response to different watering conditions in soil. Herein, Cd isotope fractionation and Cd-related gene expression were employed to investigate the key regulatory mechanisms during uptake, root-to-shoot, and stem-to-leaf transport of Cd in rice grown in pot experiments with Cd-contaminated soil under flooded and non-flooded conditions, respectively. The results showed that soil flooding decreased the Cd concentration in soil porewater and, thereby, Cd uptake and transport in rice. Cd isotopes fractionated negatively from soil porewater to the whole rice (flooded: ∆114/110Cdrice-porewater = -0.15‰, non-flooded: ∆114/110Cdrice-porewater = -0.39‰), suggesting that Cd transporters preferentially absorbed light Cd isotopes. The non-flooded treatment revealed an upregulated expression of OsNRAMP1 and OsNRAMP5 genes compared to the flooded treatment, which may partially contribute to its more pronounced porewater-to-rice fractionation. Cd isotopes fractionated positively from roots to shoots under flooded conditions (∆114/110Cdshoot-root = 0.19‰). However, a reverse direction of fractionation was observed under non-flooded conditions (∆114/110Cdshoot-root = -0.67‰), which was associated with the substantial upregulation of CAL1 in roots, facilitating xylem loading of Cd-CAL1 complexes with lighter isotopes. After being transported to the shoots, the majority of Cd were detained in stems (44%-55%), which were strongly enriched in lighter isotopes than in the leaves (∆114/110Cdleaf-stem = 0.77 to 1.01‰). Besides the Cd-CAL1 transported from the roots, the expression of OsPCS1 and OsHMA3 in the stems could also favor the enrichment of Cd-PCs with lighter isotopes, leaving heavier isotopes to be transported to the leaves. The higher expression levels of OsMT1e in older leaves than in younger leaves implied that Cd immobilization via binding to metallothioneins like OsMT1e may favor the enrichment of lighter isotopes in older leaves. The non-flooded treatment showed lighter Cd isotopes in younger leaves than the flooded treatment, suggesting that more Cd-CAL1 in the stems and Cd-PCs in the older leaves might be transported to the younger leaves under non-flooded conditions. Our results demonstrate that isotopically light Cd can be preferentially transported from roots to shoots when more Cd is absorbed by rice under non-flooded conditions, and isotope fractionation signature together with gene expression quantification has the potential to provide a better understanding of the key processes regulating Cd transfer in rice.


Assuntos
Oryza , Poluentes do Solo , Cádmio/análise , Expressão Gênica , Isótopos , Oryza/genética , Raízes de Plantas/química , Solo , Poluentes do Solo/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA